Answer: The required probability of event B is P(B) = 0.37.
Step-by-step explanation: For two events A and B, we are given the following probabilities :
P(A) = 0.34, P(A ∩ B) = 0.27 and P(A ∪ B) = 0.44.
We are to find the probability of event B, P(B) = ?
From the laws of probability, we have

Thus, the required probability of event B is P(B) = 0.37.
Answer:
(1, 5 )
Step-by-step explanation:
Given
x² - 2x + y - 4 = 0 ( add 4 to both sides )
x² - 2x + y = 4
Complete the square on x² - 2x
add ( half the coefficient of the x term )² to both sides
x² + 2(- 1)x + 1 + y = 4 + 1, that is
(x - 1)² + y = 5
Subtract (x - 1)² from both sides
y = - (x - 1)² + 5
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
y = - (x - 1)² + 5 ← is in vertex form
with vertex = (1, 5 )
Answer: See explanation
Step-by-step explanation:
First and foremost, we should not that:
1 yard = 3 feet
We are informed that Wyatt uses 200 feet of rope for each doormat and that he wants to make 25 doormats.
The expression that shows a correct way to find how many yards of rope he needs will be:
= (200 × 25) / 3
= 5000/3
= 1666.67 yards
Answer:
WAP
Step-by-step explanation:
ddhghfd WAP
If you're using the app, try seeing this answer through your browser: brainly.com/question/2822258_______________
• Function: f(x) = 3x + 12.
A. Finding the inverse of f.
The composition of f with its inverse results in the identity function:
(f o g)(x) = x
f[ g(x) ] = x
3 · g(x) + 12 = x
3 · g(x) = x – 12
x – 12
g(x) = ⸺⸺
3
x g(x) = ⸺ – 4 <——— this is the inverse of f.
3________
B. Verifying that the composition of f and g gives us the identity function:
•

![\mathsf{=f\big[g(x)\big]}\\\\\\ \mathsf{=3\cdot \left(\dfrac{x}{3}-4\right)+12}\\\\\\ \mathsf{=\diagup\hspace{-7}3\cdot \dfrac{x}{\diagup\hspace{-7}3}-3\cdot 4+12}\\\\\\ \mathsf{=x-12+12}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Df%5Cbig%5Bg%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D3%5Ccdot%20%5Cleft%28%5Cdfrac%7Bx%7D%7B3%7D-4%5Cright%29%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%5Cdfrac%7Bx%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-3%5Ccdot%204%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx-12%2B12%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
and also
•

![\mathsf{=g\big[f(x)\big]}\\\\\\ \mathsf{=\dfrac{f(x)}{3}-4}\\\\\\ \mathsf{=\dfrac{3x+12}{3}-4}\\\\\\ \mathsf{=\dfrac{\diagup\hspace{-7}3\cdot (x+4)}{\diagup\hspace{-7}3}-4}\\\\\\ \mathsf{=x+4-4}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Dg%5Cbig%5Bf%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7Bf%28x%29%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7B3x%2B12%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdfrac%7B%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%28x%2B4%29%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%2B4-4%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
________
C. Since f and g are inverse, then
f(g(– 2))
= (f o g)(– 2)
=
– 2 <span>✔
</span>
• Call h the compositon of f and g. So,
h(x) = (f o g)(x)
h(x) = x
As you can see above, there is no restriction for h. Therefore, the domain of h is R (all real numbers).
I hope this helps. =)