Answer:
d jjh hhv g 7655 ijv 77_* uyfgj 3&88 huih
Answer:
26325 m\s
Explanation:
Data:
v = ?
f = 117 Hz
w = 225
Formula:
v = fw
Solution:
v = ( 117)(225)
v = 26325 m\s <em>A</em><em>n</em><em>s</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
Lead, Ethyl alcohol and water.
Explanation:
Specific heat capacity of a substance can be define as the quantity of heat that is absorbed by a substance needed to change the temperature of a unit mass of one kilogram of the substance by one kelvin
The De Broglie wavelength of the electron is

And we can use De Broglie's relationship to find its momentum:

Given

, with m being the electron mass and v its velocity, we can find the electron's velocity:

This velocity is quite small compared to the speed of light, so the electron is non-relativistic and we can find its kinetic energy by using the non-relativistic formula: