1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
5

The length of a simple pendulum is 0.65 m and the mass of the particle (the “bob”) at the end of the cable is 0.22 kg. The pendu

lum is pulled away from its equilibrium position by an angle of 7.6° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What
is the angular frequency of the motion? (b) Using the position of the bob at its lowest point as the reference level, determine the total mechanical energy of the pendulum as it swings back and forth. (c) What is the bob’s speed as it passes through the lowest point of the swing?
Physics
1 answer:
FromTheMoon [43]3 years ago
8 0

Answer:

A student is conducting a pendulum experiment. Which of the following pieces of safety equipment would be the most vital to conduct this test?eibisbbbhbcjb

You might be interested in
The edge of a flying disc with a radius of 0.13 m spins with a tangential speed of 3.3 m/s. The centripetal acceleration of the
Marat540 [252]

Answer:

Centripetal acceleration = 83.77m/s²

Explanation:

<u>Given the following data;</u>

Radius, r = 0.13m

Velocity, v = 3.3m/s

To find centripetal acceleration;

Centripetal acceleration is given by the formula;

Acceleration, a = \frac {v^{2}}{r}

Substituting into the equation, we have;

Centripetal \; acceleration, a = \frac {3.3^{2}}{0.13}

Centripetal \; acceleration, a = \frac {10.89}{0.13}

<em>Centripetal acceleration = 83.77m/s²</em>

<em>Therefore, the centripetal acceleration of the edge of the disc is 83.77 m/s². </em>

5 0
3 years ago
Read 2 more answers
I forgot to write also put drawings on my theory questions
11Alexandr11 [23.1K]
Hi love hope you had an amazing day! you’re beautiful!!
8 0
3 years ago
1. (30 pts) Let x(t) = cos(πt/2) be a continuous-time signal,
posledela

Given that the function of the wave is f(x) = cos(π•t/2), we have;

a. The graph of the function is attached

b. 4 units of time

c. Even

d. 4.935 J/kg

e. 1.234 W/kg

<h3>How can the factors of the wave be found?</h3>

a. Please find attached the graph of the signal created with GeoGebra

b. The period of the signal, T = 2•π/(π/2) = <u>4</u>

c. The signal is <u>even</u>, given that it is symmetrical about the y-axis

d. The energy of the signal is given by the formula;

\frac{1}{2}  \cdot  \mu^{2} \cdot \omega ^{2}  \cdot \:  {a}^{2}  \times  \lambda

Which gives;

E = 0.5 × 1.571² × 1² × 4 = <u>4.935 J/kg</u>

e. The power of the wave is given by the formula;

E = 0.5 × 1.571² × 1² × 4 × 0.25 = <u>1.234 W/</u><u>kg</u>

Learn more about waves here:

brainly.com/question/14015797

8 0
3 years ago
1. A rocket is fired vertically from the launch pad with a
zavuch27 [327]

Answer:

Max height= 36000 meters

Total Time = 120 seconds

Explanation:

0 = U - at

U = at

U= 20*60

U= 1200 m/s

MAX altitude would be

(U²Sin²tita)/2g

Max height= 1200² *( SIN90)²/(2*20)

Time of FLIGHT

2 * 1200/20

2400/20

120 sec onds

7 0
3 years ago
Please help me with this question​
vovangra [49]

Answer:

1. 12 V

2a. R₁ = 4 Ω

2b. V₁ = 4 V

3a. A = 1.5 A

3b. R₂ = 4 Ω

4. Diagram is not complete

Explanation:

1. Determination of V

Current (I) = 2 A

Resistor (R) = 6 Ω

Voltage (V) =?

V = IR

V = 2 × 6

V = 12 V

2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:

Voltage (V) = 12 V

Current (I) = 1 A

Equivalent resistance (R) =?

V = IR

12 = 1 × R

R = 12 Ω

a. Determination of R₁

Equivalent resistance (R) = 12 Ω

Resistor 2 (R₂) = 8 Ω

Resistor 1 (R₁) =?

R = R₁ + R₂ (series arrangement)

12 = R₁ + 8

Collect like terms

12 – 8 =

4 = R₁

R₁ = 4 Ω

b. Determination of V₁

Current (I) = 1 A

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) =?

V₁ = IR₁

V₁ = 1 × 4

V₁ = 4 V

3a. Determination of the current.

Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) = 6 V

Current (I) =?

V₁ = IR₁

6 = 4 × I

Divide both side by 4

I = 6 / 4

I = 1.5 A

Thus, the ammeter (A) reading is 1.5 A

b. Determination of R₂

We'll begin by calculating the voltage cross R₂. This can be obtained as follow:

Total voltage (V) = 12 V

Voltage 1 (V₁) = 6 V

Voltage 2 (V₂) =?

V = V₁ + V₂ (series arrangement)

12 = 6 + V₂

Collect like terms

12 – 6 = V₂

6 = V₂

V₂ = 6 V

Finally, we shall determine R₂. This can be obtained as follow:

Voltage 2 (V₂) = 6 V

Current (I) = 1.5 A

Resistor 2 (R₂) =?

V₂ = IR₂

6 = 1.5 × R₂

Divide both side by 1.5

R₂ = 6 / 1.5

R₂ = 4 Ω

4. The diagram is not complete

7 0
3 years ago
Other questions:
  • An external computer flash drive can hold 1 gigabyte of data. How many bytes is this?
    6·2 answers
  • A crane performs 1820 J of work by lifting an object 35 meters. How much force did the crane exert?
    8·1 answer
  • In real machines,efficiency is always
    8·2 answers
  • A small submarine has a volume of 30 m3 and has a mass of 40,000 kg. It needs external tanks that can be filled with air for buo
    13·1 answer
  • How was the water level by rock affected by wave?<br> -Tsunami-
    8·1 answer
  • A glass of water has a temperature of 8°c. in which situation will more energy be transferred, when the air's temperature is 25°
    9·1 answer
  • What is the amplitude of this wave? 13 cm<br> 21cm<br> 26 cm<br>42 cm​
    12·2 answers
  • A car with a mass of 650 kg is moving with a speed of 20m/s. Calculate the kinetic energy of the car?
    12·1 answer
  • Drag each tile to the correct box.
    10·1 answer
  • Explain and derive the equation for capillary action in the phenomenon of surface tension​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!