At r = 0.766 R the magnetic field intensity will be half of its value at the center of the current carrying loop.
We have a circular loop of radius ' r ' carrying current ' i '.
We have to find at what distance along the axis of the loop is the magnetic field one-half its value at the center of the loop.
<h3>What is the formula to calculate the
Magnetic field intensity due to a current carrying circular loop at a point on its axis?</h3>
The formula to calculate the magnetic field intensity due to a current carrying ( i ) circular loop of radius ' R ' at a distance ' x ' on its axis is given by -

Now, for magnetic field intensity at the center of the loop can calculated by putting x = 0 in the above equation. On solving, we get -

Let us assume that the distance at which the magnetic field intensity is one-half its value at the center of the loop be ' r '. Then -




r = 0.766R
Hence, at r = 0.766 R - the magnetic field intensity will be half of its value at the center of the current carrying loop.
To solve more questions on magnetic field intensity, visit the link below-
brainly.com/question/15553675
#SPJ4
Answer:
D
Explanation:
cuz it transforms from one to another can't be created not destroyed.PERIOD!
Lithium has five isotopes, and each will have different notation. Lithium-7 is commonly used in salt and nuclear reactors. .ZAX , where X is the atomic symbol for the element, here Li for lithium, Z is the mass number, or the total number of protons and neutrons, and A is the atomic number, or the number of protons
Answer:
Time will be 19 ms so option (a) is correct option
Explanation:
We have given that mass of wire m = 50 gram = 0.5 kg
Frequency f = 810 Hz
Wavelength = 0.4 m
Velocity is given by

Amplitude is given as d = 6 m
So time 
So option (a) is correct option
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer: