Answer:
See the answer below
Explanation:
If you step on the brake of a car while driving, the frictional force between the tires of the car and the surface of the road increases in opposition to the motion of the car. Consequently, the car slows down.
If you release your foot from the brake pedal when the car is still at half speed, the frictional force reduces and the car speeds up a bit even without pressing the throttle. Eventually, the frictional force will slow down and stop the car if the throttle is not pressed.
Apply Newton's second law to the person's motion:
F = ma
F = net force, m = mass, a = acceleration
Given values:
m = 50.8kg, a = 3.50m/s²
Plug in and solve for F:
F = 50.8(3.50)
F = 178N
Explanation:
Earth rotates in prograde mation.As viewed from the north pole star Polaris.Earth turns counterclockwise,, the north pole is point in the northern,, Hemisphere where Earth's Axis of rotation meets it's surface
Answer:
This is because it steps up or steps down electrical voltage. It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power.
Explanation:
A transformer steps up or steps down electrical voltage, by transmitting power at a voltage, V₁ and Current I₁ at one terminal, to a voltage, V₂ and Current I₂ at its other terminals, just like a lever transmits force from one point to another. Since the power transmitted remains the same, (energy per unit time remains constant), I₁V₁ = I₂V₂ ⇒ I₁/I₂ = V₂/V₁ = n (the turns ratio of the transformer). So, the turns ratio will determine if its a step-up or step-down transformer. V₂ = nV₁. So, if V₁ > V₂ it is a step down transformer and if V₁ < V₂ it is a step-up transformer.It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power, since P = IV = constant for the transformer.
Answer:
no the moon does not rotate it only goes in circle just like the sun so I disagree with your friend