Answer:
and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
= let initial amount of the reactant
a = amount left after decay process
We have :


t = 95 s


Half life is given by for first order kinetics::


and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..
Answer:
49.63 degree
Explanation:
thickness of glass slab, t = 0.6 cm
angle of incidence = 59 degree
Let r be the angle of refraction
The refractive index of glass, ng = 3/2
refractive index of water, nw = 4/3
refarctive index of glass with respect to water = ng / nw = 3 /2 ÷ 4 /3 = 9 / 8
So, by use of Snell's law
Refractive index of glass with respect to water = Sin i / Sin r
9 / 8 = Sin 59 / Sin r
9 / 8 = 0.857 / Sin r
Sin r = 0.7619
r = 49.63 degree
Answer:
decreases.
Explanation:
When the aircraft is flies from the warm air into the colder air then its speed will be decreases.
as we know that
we know mach number is constant
so that here Mach number M is expressed as
M =
.............................1
here u is Local flow velocity with respect to the boundarie and v is the speed of sound in the medium
If the aircraft flies from hot air to cold air, the speed of sound in the medium will decrease. But the Mach number remains constant. Therefore, the local flow velocity relative to the boundaries also decreases.
Answer:
x=0.154kg
Explanation:
(x*L)+(0.5kg*4200*50)+(x*4200*(-50)=0
(x*333 000J/kg*c)+(0.5kg*4200J/kg*C*(-40C))+(x*4200J/kg*C*50C)=0
During upward projection the final velocity is zero, and the gravitational acceleration is -10 m/s² (against the gravity).
Therefore; using the equation;
S = 1/2gt² + ut
Where s is the height h, g is gravitational acceleration, and t is the time and u is the initial velocity u, is 16 ft/s.
Thus; h= 1/2(-10)t² + 16t
We get; h = -5t² + 16t
Therefore; the quadratic equation is 5t² - 16t + h =0