Answer:
151.9 N
Explanation:
Force = mass x acceleration
Acceleration due to gravity is 9.8 m/s^2 (you should memorize this number).
F = ma
F = (15.5)(9.8)
F = 151.9
Answer:
<em>The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.</em>
<em></em>
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.
Answer:
<em>Velocity</em><em> </em><em>-</em><em>time</em><em> </em><em>graph</em><em> </em>
Explanation:
hope it helps ✌️✌️
Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as = 
where G is the gravitational constant
Gravitational force of the planet = 
=
=
recall, gravitational force of earth is given as = 
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
Correct answer choice is:
C. Polarized in a vertical plane.
Explanation:
Polarized sunglasses give excellent glare shield, particularly on the water. Polarized lenses include a specific filter that prevents this type of strong reflected light, diminishing glare.
This is because when you angle one polarized lens to different perpendicularly, they prevent glare both horizontally and vertically. The polarized lenses are enduringly tinted sunglasses that exceedingly decrease glare.