Answer:37 J
Explanation:
Given
Step :1
Heat added Q=44 J
Work done=-20 J

Step :2
Heat added Q=-61 J
work done 



as the process is cyclic


work done in compression is 37 J
Answer:
a) B = 1.99 x 10⁻⁴ Tesla
b) B = 0.88 x 10⁻⁴ Tesla
Explanation:
According to Biot - Savart Law, the magnetic field due to a currnt carrying straight wire is given as:
B = μ₀ I L/4πr²
where,
μ₀ = permebility of free space = 1.25 x 10⁻⁶ H m⁻¹
I = current = 2 A
L = Length of wire = 40 cm = 0.4 m
a)
r = radius of magnetic field = 2 cm = 0.02 m
Therefore,
B = (1.25 x 10⁻⁶ H m⁻¹)(2 A)(0.4 m)/4π(0.02 m)²
<u>B = 1.99 x 10⁻⁴ Tesla</u>
<u></u>
b)
r = radius of magnetic field = 3 cm = 0.03 m
Therefore,
B = (1.25 x 10⁻⁶ H m⁻¹)(2 A)(0.4 m)/4π(0.03 m)²
<u>B = 0.88 x 10⁻⁴ Tesla</u>
In other words a infinitesimal segment dV caries the charge
<span>dQ = ρ dV </span>
<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>
<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>
<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
Answer:
Explanation:
Given
mass of crane 
distance moved 
Since it is moving with a constant velocity therefore net force on it is zero
Tension force=weight
T=mg
Work done by Tension T is



Work done by Gravity will be equal in magnitude but opposite in sign and can be obtained by work energy theorem which states that change in kinetic energy of object is equal to work done by all the forces


Answer:
0.500 T
Explanation:
Since the change in time and the number of coils are both 1, I set the problem up to be 1.3=(1.5(x)-13(x)). I then plugged in numbers for x until I got the answer to be 1.3 V.