Answer:
The earth's magnetic field protects the surface from strong electrical currents coming from the sun
Explanation:
The Earth's magnetic field called the “magnetosphere” – protects our atmosphere from the “solar wind.” That's the constant stream of charged particles flowing outward from the sun. When the magnetosphere shields the Earth from these solar particles, they get funneled toward the polar regions of our atmosphere.
The Earth's magnetic field serves to deflect most of the solar wind, whose charged particles would otherwise strip away the ozone layer that protects the Earth from harmful ultraviolet radiation. One stripping mechanism is for gas to be caught in bubbles of magnetic field, which are ripped off by solar winds.
Answer:
The driver was not telling the truth because it is not possible for a car to hit another car from behind and generate a force to the sides that deflects it from its path.
Explanation:
First, we analyze the driver's statement.
The driver when arriving at the curve, is collided from behind by another car and deviates from his path and crashes into a tree. For the car to go to the tree there must be a force towards the tree.
The net force that causes the car to deviate must be formed by the sum of the motion vector of the first car plus the force that is directed towards the tree.
Here we verify that a car hitting from behind will not generate a force to the sides, but will generate a force in the same direction that the car moves, forward.
Radiation is a type of heat transfer wherein there is no need for medium or media through which the heat will flow. Consequently, the radiation waves are able to travel through vacuum. The best observation as evidence to conclude that heat is indeed transferred by radiation is the increase of temperature of the receiving body.
Answer: 7.38 km
Explanation: The attachment shows the illustration diagram for the question.
The range of the bomb's motion as obtained from the equations of motion,
H = u(y) t + 0.5g(t^2)
U(y) = initial vertical component of velocity = 0 m/s
That means t = √(2H/g)
The horizontal distance covered, R,
R = u(x) t = u(x) √(2H/g)
Where u(x) = the initial horizontal component of the bomb's velocity = 287 m/s, H = vertical height at which the bomb was thrown = 3.24 km = 3240 m, g = acceleration due to gravity = 9.8 m/s2
R = 287 √(2×3240/9.8) = 7380 m = 7.38 km