Answer:
y= -7 and x= -1
Step-by-step explanation:
To do this, line up the variables so it looks like this...
y-6x=-1
y-3x=-4
The reason why -6x and -3y changes to negative is because that it moved to the other side of the equation.
distribute negative to the bottom equation because the two equations have the same number variable which is y...
y-6x=-1
-y+3x=4
Y cancels out and it will be left with -3x = 3.
X = -1.... plug that in to any of the two equation and you get y = -7.
Hope I helped and have a nice day!!
Use the data to create a scatter plot\<br>
forks: 2,4,6,8,10,12<br>
spoons: 10,6,4,1,0,2
Len [333]
Answer:
The resulting scatter plot is attached below :
To plot the required scatter plot :
We first take forks on the x - axis and the spoons on the y - axis
Now we arrange the given data in the form of x and y coordinates
Hence, the data becomes :
(2, 10)
(4, 6)
(6, 4)
(8, 1)
(10, 0)
(12, 2)
Now, We plot these points on the graph and get the required scatter plot for the given data.
Answer:
x=-14y
Step-by-step explanation:
9x+y=-5
x+y=-5-9
x+y=-14
x=-14y
The answer is a) 24 cubic feet
Answer:
16/4= 4
Step-by-step explanation:
⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣀⣀⣤⣤⣴⣶⣶⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⣶⣶⣤⣤⣄⣀⠄⠄⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠄⠄⣠⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⡄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⢠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣆⠄⠄⠄⠄ ⠄⠄⠄⠄⢀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡄⠄⠄⠄
⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠄⠄⠄ ⠄⠄⠄⠄⣿⣿⣿⡿⠟⣋⣉⣉⡉⠉⠙⠛⠿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠉⠄⣀⣀⣀⣀⣈⠙⢿⣿⣿⣿⠄⠄⠄ ⠄⠄⠄⢀⣿⣿⣟⣴⣾⣿⣿⣍⡙⠛⠶⣤⡀⠄⠙⢿⣿⣿⣿⣿⣿⡟⠁⠄⣠⡴⠛⣉⣥⣤⣾⣿⣿⣶⣿⣿⣿⠄⠄⠄ ⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣦⣄⠙⠦⣀⣸⣿⣿⣿⣿⣿⣆⣠⠾⢋⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠄⠄ ⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⡄⠈⢿⣿⣿⣿⣿⣿⡿⢁⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄ ⠄⠄⠄⣾⣿⣿⣿⣿⠟⠛⠉⠉⠉⠉⠛⠿⣿⣿⡄⠄⣿⣿⣿⣿⣿⣷⣿⣿⡿⠛⠉⠁⠄⠄⠈⠉⠛⢿⣿⣿⣿⡇⠄⠄ ⠄⠄⠄⣿⣿⡟⠋⠁⠄⠄⠄⠄⠄⠄⠄⠄⠈⣻⡇⠄⢸⣿⣿⣿⣿⣿⣿⣏⡀⠄⠄⠄⠄⠄⢀⣀⣀⣀⣙⣻⣿⡇⠄⠄ ⠄⠄⠄⢻⣿⣏⣤⣴⣶⣶⣶⣶⣶⣶⣶⣿⣿⣿⡇⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄ ⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄ ⠄⠄⠄⠄⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠁⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄ ⠄⠄⠄⠄⣌⠻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠃⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠁⠄⠄⠄ ⠄⠄⠄⠄⢻⣧⠈⡉⠛⣛⣛⣛⣿⣿⣿⠉⠄⣤⡀⠄⣿⣿⣿⣿⣿⣿⣶⣟⣿⣿⣿⣛⠛⠻⠟⠛⠛⡋⢡⣾⠄⠄⠄⠄ ⠄⠄⠄⠄⠈⢿⣇⢻⡄⠘⣿⣿⣿⣿⣿⣄⢸⣿⠁⢠⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠇⢀⣾⢃⣾⡏⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠘⣿⣯⢿⣄⠈⠛⢿⣿⣿⣿⣿⣿⣦⢸⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⣿⠟⠁⢠⣿⢏⣾⡟⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠘⣿⣧⡹⣦⡀⠄⠈⠉⠛⠛⠛⠁⠄⠈⣉⡉⠁⠄⠈⠻⠿⠿⠛⠋⠁⢀⣴⡿⢁⣾⡟⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠘⣿⣷⡈⠻⣷⣦⣄⣀⠄⠄⠄⢀⣾⣿⣿⣆⠄⠄⠄⠄⠄⣀⣠⣴⣿⡯⢠⣾⡟⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠘⣿⣷⡀⠈⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⣶⣿⣿⣿⣿⣿⡿⣱⣿⠟⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠘⢿⣷⡄⠄⣶⣿⣿⣻⣿⠿⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⣟⣴⣿⠏⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⢿⣿⡄⣿⣿⣿⣿⣿⣿⡄⠄⠄⢠⣾⣿⣿⣿⣿⣿⢯⣾⡿⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⢻⣿⣿⣿⣿⣿⣿⣿⠃⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⡟⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠹⣿⣿⣿⣿⣿⡇⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⠋⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣴⢹⠄⠄⠄⠄⠄⠄⠈⠻⣿⣿⣿⡇⠄⠄⠄⢠⣿⣿⣿⣿⠟⠁⠄⠄⠄⠄⠄⠄⠄⠇⠄⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⣼⣿⣦⠄⠄⠄⠄⠄⠄⠄⠄⠙⠿⣿⣿⠄⠄⠄⣾⣿⣿⠟⠁⠄⠄⠄⠄⠄⠄⠄⠄⢀⣴⣿⡄⠄⠄⠄⠄ ⠄⠄⠄⢀⣼⣿⣿⣿⣧⡀⠄⠄⠄⠄⠄⠄⠄⠄⠈⠉⠄⠄⠄⠋⠉⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣾⣿⣿⣿⣆⠄⠄⠄ ⠄⠄⢀⣾⣿⣿⣿⣿⣿⣿⣄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣴⣿⣿⣿⣿⣿⣿⣦⠄⠄
⠄⢰⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠄ ⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣦⣀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠄ ⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⡤⠄⠄⠄⠄⠄⠄⠄⠄⢀⣤⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠄⠄ ⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠓⠗⢂⣀⣀⣀⠐⠶⠸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇