<span>First we have to find the sum and the difference of those polynomials- The sum is: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) + ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5 - 2 x^3y^4 - 7xy^3 - 8 x^5y + 2 x^3y^4 + xy^3 = - 5 x^5y - 6 xy^3. And the difference: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) - ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5y - 2 x^3y^4 - 7 xy^3 + 8 xy^5 - 2 x^3y^4 - xy^3 = 11 xy^5 - 4 x^3y^4 - 8xy^3. The highest exponent in both polynomials is 5. Answer: The degree of the polynomials is 5.</span>
Answer:
h(x - 1) = -5x - 2
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
Terms/Coefficients
Functions
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
h(x) = -5x - 7
<u>Step 2: Find</u>
- Substitute in <em>x </em>[Function h(x)]: h(x - 1) = -5(x - 1) - 7
- [Distributive Property] Distribute -5: h(x - 1) = -5x + 5 - 7
- Combine like terms: h(x - 1) = -5x - 2
Answer:
$3
Step-by-step explanation: