What do you need help in?
Problem 1
With limits, you are looking to see what happens when x gets closer to some value. For example, as x gets closer to x = 2 (from the left and right side), then y is getting closer and closer to y = 1/2. Therefore the limiting value is 1/2
Another example: as x gets closer to x = 4 from the right hand side, the y value gets closer to y = 4. This y value is different if you approach x = 0 from the left side (y would approach y = 1/2)
Use examples like this and you'll get the results you see in "figure 1"
For any function values, you'll look for actual points on the graph. A point does not exist if there is an open circle. There is an open circle at x = 2 for instance, so that's why f(2) = UND. On the other hand, f(0) is defined and it is equal to 4 as the point (0,4) is on the function curve.
=======================================================
Problem 2
This is basically an extension of problem 1. The same idea applies. See "figure 2" (in the attached images) for the answers.
So...the diameter is increasing at a rate if 2cm/minute, therefore the radius (1/2 the diameter) is increasing at half the rate. You will learn how to calculate the rate of change at a specific point in time in calculus.
A- dot 1 . that’s the answer but it’s making me type 20 words.
Answer:
Jan 5, 2017 - A set of face cards contains 4 Jacks, 4 Queens, and 4 Kings. Carlie chooses a card from the set, records the type of card, and then replaces the card. She repeats this procedure a total of 60 times. Her results are shown in the table. How does the experimental probability of choosing a Queen
Step-by-step explanation: