Answer:
In 6 ways 28 can be arranged
Step-by-step explanation:
1 × 28 = 28
2 × 14 = 28
4 × 7 = 28
7 × 4 = 28
14 × 2 = 28
28 × 1 = 28
Thus, In 6 ways 28 can be arranged
<em><u>-TheUnknownScientist</u></em>
Answer:
In inequality notation:
Domain: -1 ≤ x ≤ 3
Range: -4 ≤ x ≤ 0
In set-builder notation:
Domain: {x | -1 ≤ x ≤ 3 }
Range: {y | -4 ≤ x ≤ 0 }
In interval notation:
Domain: [-1, 3]
Range: [-4, 0]
Step-by-step explanation:
The domain is all the x-values of a relation.
The range is all the y-values of a relation.
In this example, we have an equation of a circle.
To find the domain of a relation, think about all the x-values the relation can be. In this example, the x-values of the relation start at the -1 line and end at the 3 line. The same can be said for the range, for the y-values of the relation start at the -4 line and end at the 0 line.
But what should our notation be? There are three ways to notate domain and range.
Inequality notation is the first notation you learn when dealing with problems like these. You would use an inequality to describe the values of x and y.
In inequality notation:
Domain: -1 ≤ x ≤ 3
Range: -4 ≤ x ≤ 0
Set-builder notation is VERY similar to inequality notation except for the fact that it has brackets and the variable in question.
In set-builder notation:
Domain: {x | -1 ≤ x ≤ 3 }
Range: {y | -4 ≤ x ≤ 0 }
Interval notation is another way of identifying domain and range. It is the idea of using the number lines of the inequalities of the domain and range, just in algebriac form. Note that [ and ] represent ≤ and ≥, while ( and ) represent < and >.
In interval notation:
Domain: [-1, 3]
Range: [-4, 0]
You would write it like this:
1/2q+8
So, it's just an annoying problem. Keep the tax rates in mind for each thing.
$70 of souvenirs mean the tax is 5% since it is not prepared food, lodging, or auto rentals.
$580 on prepared food means that has 7% tax because it is special.
$620 on the car has a 10% tax, as stated in the problem.
So do 70(1.05)+580(1.07)+620(1.1) to get $1376.1.0