Answer:
E. All of the answers are correct
Explanation:
Overload principle in fitness training is associated with a gradual development of an athlete's abilities by progressively increasing the athlete's load and training.
In order to do this, the athlete's limit must be surpassed albeit gradually at first then picked up later over time.
The question is looking for "ellipse" and "two" to fill in the blanks.
Answer:
110 meters is the distance where they will intersect
Explanation:
given,
liquid density = 1900 kg/m³
distance of upper hole = 19 m
distance of lower hole = 117 m
acceleration due to gravity = 9.8 m/s²
the speed at each point
for upper hole
v = 19.29 m/s
lower hole
v = 47.88 m/s
The path for each is parabolic
x = v t
we get
upper hole
lower hole
y for upper hole = 80 + y for lower hole


x = 109.32 meters
110 meters is the distance where they will intersect
Answer:
ω = 2.1 rad/sec
Explanation:
- As the rock is moving along with the merry-go-round, in a circular trajectory, there must be an external force, keeping it on track.
- This force, that changes the direction of the rock but not its speed, is the centripetal force, and aims always towards the center of the circle.
- Now, we need to ask ourselves: what supplies this force?
- In this case, the only force acting on the rock that could do it, is the friction force, more precisely, the static friction force.
- We know that this force can be expressed as follows:

where μs = coefficient of static friction between the rock and the merry-
go-round surface = 0.7, and Fn = normal force.
- In this case, as the surface is horizontal, and the rock is not accelerated in the vertical direction, this force in magnitude must be equal to the weight of the rock, as follows:
- Fn = m*g (2)
- This static friction force is just the same as the centripetal force.
- The centripetal force depends on the square of the angular velocity and the radius of the trajectory, as follows:

- Since (1) is equal to (3), replacing (2) in (1) and solving for ω, we get:

- This is the minimum angular velocity that would cause the rock to begin sliding off, due to that if it is larger than this value , the centripetal force will be larger that the static friction force, which will become a kinetic friction force, causing the rock to slide off.