Answer:
0.67 seconds
8.576 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Time taken by the stunt woman to drop to the saddle is 0.67 seconds which is the time she will stay in the air.
Speed of the horse = 12.8 m/s
Distance = Speed × Time
⇒Distance = 12.8×0.67
⇒Distance = 8.576 m
Hence, the distance between the horse and stunt woman should be 8.576 m when she jumps.
<span>the action of moving something from its place or position.</span>
PART A) Yes, the fact that there is a frictional force acting on the satellite generates a loss of energy due to friction. What causes satellite to diminish its orbit during its tour. In fact, many satellites have rectifier systems that allow them to position themselves and remain in their orbit for a long time to avoid being trapped by the Earth's gravity Force and fall into the atmosphere where they would probably be torn apart.
PART B) As a similarity, one could start by mentioning the structure of the two equations are similar and have their own constants who were responsible for supporting them. While the law of gravity speaks of the masses of the bodies the electrostatic law speaks of the charges of the bodies. For both the force is inversely proportional to the square of the distance that separates them.
However, the most notable difference between them is basically their statement. While one of the equations speaks about greavedad the other reflects the electromagnetic phenomena. It should be noted that the force of gravity is much weaker than the electromagnetic force and that the latter has the capacity of attraction and repulsion. While the gravitational force only that of attraction.
If the object's kinetic energy is zero, then due to in multiplication factor, it's momentum will also be equal to zero 'cause the velocity of the object must be Nil
In short, Your Answer would be: "Zero"
Hope this helps!