If the velocity is constant then the acceleration of the object is zero.

Thus when we apply the equation

It remains

or equivalent
Answer:
The magnitude of the electrostatic force is 120.85 N
Explanation:
We can use Coulomb's law to find the electrostatic force between the down quarks.
In scalar form, Coulomb's law states that for charges
and
separated by a distance d, the magnitude of the electrostatic force F between them is:

where
is Coulomb's constant.
Taking the values:


and knowing the value of the Coulomb's constant:

Taking all this in consideration:


Answer:
The particle comes to rest before reaching the position x=4m.
Explanation:
When the object is at x=0m, all of its energy is kinetic energy. Using the equation for kinetic energy yields KE=1/2mv^2=(12)(2)(3)^2=9J. Using the given equation for potential energy when the object is at x=4m yields U=4x^2=4(4)^2=64J. Since the system only has 9J of energy, the object comes to rest before reaching x=4m.
Answer:
C. remix
Explanation:
A is wrong because the prefix ir- means not
B is wrong because the prefix un means not
C is correct because re means again
D is wrong because over means too much