Explanation :
Displacement refers to the distance between the final and the initial position. Hence the displacement of the ball will be the difference between the initial and the final displacement.
Let the initial position be 0.
Final position = 8 cm
So the difference between initial position and final position = 0 – 8 = - 8 cm.
So the billiard ball comes to rest 8.0 cm behind its orbital position.
Technically, this delivers a lot of energy into the Earth, but it’s
spread out over a large enough area that it doesn’t do much more than
leave footprints in a lot of gardens. A slight pulse of pressure spreads
through the North American continental crust and dissipates with little
effect. The sound of all those feet hitting the ground creates a loud,
drawn-out roar which lasts many seconds.
<span>A transverse wave is one for which the direction of oscillation is perpendicular to the direction of propagation of the wave whereas, for longitudinalwaves oscillations are in the direction of propagation. Ripples in pond water move about the surface of water and they simultaneously move away from the point-0 too.</span><span>
Longitudinal waves include sound waves(vibrations in pressure, particle of displacement, and particle velocity propagated in an elastic medium) and seismic P-waves (created by earthquakes and explosions). In longitudinal waves, the displacement of the medium is parallel to the propagation of thewave.
</span>
Answer:
See the explanation below.
Explanation:
We know that density is defined as the relationship between mass and volume.

where:
m = mass [kg]
V = volume [m³]
Therefore Ro is given in:
![[kg/m^{3} ]](https://tex.z-dn.net/?f=%5Bkg%2Fm%5E%7B3%7D%20%5D)