1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
9

An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 75

0 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.
Physics
1 answer:
katen-ka-za [31]3 years ago
8 0

Answer:

Part A) 3899 kPa  

Part B) 392.33 kJ/kg  

Part C) 0.523

Part D) 495 kPa

Explanation:

Part A

First from the temperature at state 1 the relative specific volume and the internal energy at that state are determined from:

u_{1} = 214.07 kJ/kg  

\alphar_{1} = 621.2  

The relative specific volume at state 2 is obtained from the compression ratio:  

\alphar_{2} = \frac{\alpha r_{1}  }{r}

     =621.2/ 8

    = 77.65  

From this the temperature and internal energy at state 2 can be determined using interpolation with data from A-17(table):  

T_{2} = 673 K

u_{2} = 491.2 kJ/kg  

The pressure at state 2 can be determined by manipulating the ideal gas relations at state 1 and 2:  

P_{2} =  P_{1} r\frac{T_{2} }{T_{1} }

       = 95*8*673/300

      = 1705 kPa  

Now from the energy balance for stage 2-3 the internal energy at state 3 can be obtained:  

deltau_{2-3} =q_{in}\\ u_{3} -u_{2} =q_{in}\\u_{3}=u_{2}+q_{in}

     = 1241.2 kJ/kg

From this the temperature and relative specific volume at state 3 can be determined by interpolation with data from A-17(table):  

T_{3} = 1539 K  

\alpha r_{3} = 6.588  

The pressure at state 3 can be obtained by manipulating the ideal gas relations for state 2 and 3:  

P_{3} =P_{2} \frac{T_{3} }{T_{2} }

     = 3899 kPa  

<u>Part B</u>

The relative specific volume at state 4 is obtained from the compression ratio:  

\alpha r_{4}= r\alpha r_{3}

      = 52.7

From this the temperature and internal energy at state 4 can be determined by interpolation with data from A-17:  

T_{4}=775 K

u_{4}= 571.74 kJ/kg  

The net work output is the difference of the heat input and heat rejection where the heat rejection is determined from the decrease in internal energy in stage 4-1:  

w=q_{in}-q_{out}\\q_{in}-(u_{4} -u_{1} )\\=392.33 kJ/kg

<u>Part C  </u>

The thermal efficiency is obtained from the work and the heat input:  

η=\frac{w}{q_{in} }

=0.523

<u>Part D  </u>

The mean effective pressure is determined from its standard relation:  

MEP=\frac{w}{\alpha_{1}- \alpha_{2} }

      =\frac{w}{\alpha_{1}(1- \frac{1}{r}  }

      =\frac{rwP_{1} }{RT_{1} (r-1) }

      =495 kPa

You might be interested in
Two forces, F⃗ 1F→1F_1_vec and F⃗ 2F→2F_2_vec, act at a point. F⃗ 1F→1F_1_vec has a magnitude of 9.20 NN and is directed at an a
BARSIC [14]

Answer:

The x component of the resultant force is -7.27N.

Explanation:

To obtain the x component of the resultant force, first we have to know the x components of the other forces. To do this, we just have to do some trigonometry:

|F_{1x}|=|F_1|\cos\theta_1=9.20N\cos62.0\°=4.31N \\|F_{2x}|=|F_2|\cos\theta_2=5.00N\cos53.6\°=2.96N

Since both vectors are in the left side of the y-axis, they have a negative x component. So:

F_{1x}=-4.31N;\\F_{2x}=-2.96N

Finally, we sum both components to obtain the component of the resultant force:

F_{Rx}=-4.31N-2.96N=-7.27N

In words, the x component of the resultant force is -7.27N.

6 0
3 years ago
Part A.)Six boxes held at rest against identical walls.
krok68 [10]

Answer:

Explanation:

When a body is held against a vertical wall , to keep them in balanced position , normal force is applied on their surface . this force creates normal reaction which acts against the normal force and it is equal to the normal force as per newton's third law . Ultimately friction force is created which is proportional to normal force and it acts in vertically upward direction . It prevents the body from falling down .

Hence normal force = reaction force .

From second law also net force is zero , so if  normal force is N and reaction force is R

R - N = mass x acceleration = mass x 0 = 0

R = N .

Ranking normal force from  highest  to smallest

150 N , 130 N , 120 N

B )

Frictional force is equal to the weight of the body because the body is held at rest .

Ranking of frictional force form largest to smallest

7 kg , 5 kg , 3 kg , 1 kg .

Here frictional force is irrespective of the normal force acting on the body  because frictional force adjusts itself so that it becomes equal to weight in all cases here because it always balances the weight of the body .

6 0
3 years ago
Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 280 K with a velocity of 510 m/s. The exit velocity is
Nataly [62]

Answer:

Explanation:

Calculating the exit temperature for K = 1.4

The value of c_p is determined via the expression:

c_p = \frac{KR}{K_1}

where ;

R = universal gas constant = \frac{8.314 \ J}{28.97 \ kg.K}

k = constant = 1.4

c_p = \frac{1.4(\frac{8.314}{28.97} )}{1.4 -1}

c_p= 1.004 \ kJ/kg.K

The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :

0=(h_1-h_2)+\frac{(v_1^2-v_2^2)}{2}     ------ equation(1)

we can rewrite the above equation as :

0 = c_p(T_1-T_2)+ \frac{(v_1^2-v_2^2)}{2}

T_2 =T_1+ \frac{(v_1^2-v_2^2)}{2 c_p}

where:

T_1  = 280 K \\ \\ v_1 = 510 m/s \\ \\ v_2 = 120 m/s \\ \\c_p = 1.0004 \ kJ/kg.K

T_2= 280+\frac{((510)^2-(120)^2)}{2(1.004)} *\frac{1}{10^3}

T_2 = 402.36 \ K

Thus, the exit temperature = 402.36 K

The exit pressure is determined by using the relation:\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{k}{k-1}

P_2=P_1(\frac{T_2}{T_1})^\frac{k}{k-1}

P_2 = 5 (\frac{402.36}{280} )^\frac{1.4}{1.4-1}

P_2 = 17.79 \ bar

Therefore, the exit pressure is 17.79 bar

7 0
3 years ago
The current in a wire varies with time according to the relationship 1=55A−(0.65A/s2)t2. (a) How many coulombs of charge pass a
mario62 [17]

Answer:

(A) Q = 321.1C (B) I = 42.8A

Explanation:

(a)Given I = 55A−(0.65A/s2)t²

I = dQ/dt

dQ = I×dt

To get an expression for Q we integrate with respect to t.

So Q = ∫I×dt =∫[55−(0.65)t²]dt

Q = [55t – 0.65/3×t³]

Q between t=0 and t= 7.5s

Q = [55×(7.5 – 0) – 0.65/3(7.5³– 0³)]

Q = 321.1C

(b) For a constant current I in the same time interval

I = Q/t = 321.1/7.5 = 42.8A.

3 0
3 years ago
Read 2 more answers
What happens to the force between the spheres when you increase the mass of one of the spheres?
andrew11 [14]

The force between the spheres increases when the mass increases in one of the spheres.

<u>Explanation:</u>

            Newton law of universal gravity extends gravity beyond the earth's surface. This gravity depends directly on the mass of both objects and is inversely proportional to square of distance between their centers.  

                   \bold{F=\frac{G \times\left(m_{1} \times m_{2}\right)}{\left(r^{2}\right)}}

          Since gravity is directly proportional to “mass of both interacting objects”, stronger objects with greater gravitational force attract. If the mass of one object increases, gravity between them also increases. For example, if an object's mass of one double, force between them also doubles.  

4 0
3 years ago
Read 2 more answers
Other questions:
  • Why do you think the area swept out by a planet in a given period of time remains constant, even as the planet speeds up and slo
    15·2 answers
  • Which of the following statements is/are true?
    7·1 answer
  • Which is true?
    5·2 answers
  • Microwave ovens emit microwave energy with a wavelength of 12.1 cm. What is the energy of exactly one photon of this microwave r
    7·1 answer
  • An electromagnet is created using a battery, an insulated copper wire and an iron nail. The wire is wrapped around the nail 30 t
    8·1 answer
  • Hernando builds a simple DC series circuit with a standard D-cell battery and uses an ammeter to determine that the total curren
    9·1 answer
  • A circus performer wants to land in a net 5 meters to the right of where she will let go of the trapeze. If she is 10 meters abo
    13·1 answer
  • What is the net force on a car with a mass of 1000 kg if its<br> acceleration is 35 m/s^2?
    8·1 answer
  • A 7.2 magnitude earthquake, with an epicenter in Northern Mexico, was felt over 100 miles away in Southern California because wa
    6·1 answer
  • A large plate carries a uniform charge density σ = 8. 85 × 10-9 c/m2. a pattern showing equipotential surfaces with a 5 v potent
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!