1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
9

An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 75

0 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.
Physics
1 answer:
katen-ka-za [31]3 years ago
8 0

Answer:

Part A) 3899 kPa  

Part B) 392.33 kJ/kg  

Part C) 0.523

Part D) 495 kPa

Explanation:

Part A

First from the temperature at state 1 the relative specific volume and the internal energy at that state are determined from:

u_{1} = 214.07 kJ/kg  

\alphar_{1} = 621.2  

The relative specific volume at state 2 is obtained from the compression ratio:  

\alphar_{2} = \frac{\alpha r_{1}  }{r}

     =621.2/ 8

    = 77.65  

From this the temperature and internal energy at state 2 can be determined using interpolation with data from A-17(table):  

T_{2} = 673 K

u_{2} = 491.2 kJ/kg  

The pressure at state 2 can be determined by manipulating the ideal gas relations at state 1 and 2:  

P_{2} =  P_{1} r\frac{T_{2} }{T_{1} }

       = 95*8*673/300

      = 1705 kPa  

Now from the energy balance for stage 2-3 the internal energy at state 3 can be obtained:  

deltau_{2-3} =q_{in}\\ u_{3} -u_{2} =q_{in}\\u_{3}=u_{2}+q_{in}

     = 1241.2 kJ/kg

From this the temperature and relative specific volume at state 3 can be determined by interpolation with data from A-17(table):  

T_{3} = 1539 K  

\alpha r_{3} = 6.588  

The pressure at state 3 can be obtained by manipulating the ideal gas relations for state 2 and 3:  

P_{3} =P_{2} \frac{T_{3} }{T_{2} }

     = 3899 kPa  

<u>Part B</u>

The relative specific volume at state 4 is obtained from the compression ratio:  

\alpha r_{4}= r\alpha r_{3}

      = 52.7

From this the temperature and internal energy at state 4 can be determined by interpolation with data from A-17:  

T_{4}=775 K

u_{4}= 571.74 kJ/kg  

The net work output is the difference of the heat input and heat rejection where the heat rejection is determined from the decrease in internal energy in stage 4-1:  

w=q_{in}-q_{out}\\q_{in}-(u_{4} -u_{1} )\\=392.33 kJ/kg

<u>Part C  </u>

The thermal efficiency is obtained from the work and the heat input:  

η=\frac{w}{q_{in} }

=0.523

<u>Part D  </u>

The mean effective pressure is determined from its standard relation:  

MEP=\frac{w}{\alpha_{1}- \alpha_{2} }

      =\frac{w}{\alpha_{1}(1- \frac{1}{r}  }

      =\frac{rwP_{1} }{RT_{1} (r-1) }

      =495 kPa

You might be interested in
What would most likely happen as a result of the generator in a wind turbine breaking? The blades would not be turned. Less stea
Aleonysh [2.5K]

Answer:

What would most likely happen as a result of the generator in a wind turbine breaking?

The What would most likely happen as a result of the generator in a wind turbine breaking?

The blades would not be turned.

Less steam would be produced.

Electricity would not be generated.

Solar energy would not be absorbed.

The blades would not be turned.

Less steam would be produced.

Electricity would not be generated.

Solar energy would not be absorbed.

Explanation:

F

6 0
3 years ago
Read 2 more answers
Explain, using the kinetic theory of matter, why liquids and solids are more denser than gases
AlekseyPX
Solid and liquids are much more denser than gas because their molecules are close to each other and with that the molecules of them can't move that freely unlike the gas molecules. Also, because of being near to each other the molecules of solid and liquids became heavy making them dense.
5 0
3 years ago
A man pushing a mop across a floor causes it to undergo two displacements. The first has a magnitude of 152 om and makes an angl
aliya0001 [1]

Answer:

D₂= 167,21 cm : Magnitude  of the second displacement

β= 21.8° , countercockwise from the positive x-axis: Direction of the second displacement

Explanation:

We find the x-y components for the given vectors:

i:  unit vector in x direction

j:unit vector in y direction

D₁: Displacement Vector 1

D₂: Displacement Vector 2

R= resulta displacement vector

D₁= 152*cos110°(i)+152*sin110°(j)=-51.99i+142.83j

D₂= -D₂(i)-D₂(j)

R=  131*cos38°(i)+ 131*sin38°(j) = 103.23i+80.65j

We propose the vector equation for sum of vectors:

D₁+ D₂= R

-51.99i+142.83j+D₂x(i)-D₂y(j) = 103.23i+80.65j

-51.99i+D₂x(i)=103.23i

D₂x=103.23+51.99=155.22 cm

+142.83j-D₂y(j) =+80.65j

D₂y=142.83-80.65=62.18 cm

Magnitude and direction of the second displacement

D_{2} =\sqrt{(D_{x})^{2} +(D_{y} )^{2}  }

D_{2} =\sqrt{(155.22)^{2} +(62.18 )^{2}  }

D₂= 167.21 cm

Direction of the second displacement

\beta = tan^{-1} \frac{D_{y}}{D_{x} }

\beta = tan^{-1} \frac{62.18}{155.22 }

β= 21.8°

D₂= 167,21 cm : Magnitude  of the second displacement

β= 21.8.° , countercockwise from the positive x-axis: Direction of the second displacement

6 0
3 years ago
If the resultant force acting on a 2.0 kg object is equal to (3.0î + 4.0ĵ) N, what is the change in kinetic energy as the object
12345 [234]

Answer:

ΔK = 24 joules.

Explanation:

ΔK = Work done on the object

Work is equal to the dot product of force supplied and the displacement of the object.

W = F * Δs

Δs can be found by subtracting the vectors (7.0, -8.0) and (11.0, -5.0), which is written as Δs = (11.0 - 7.0, -5.0 - -8.0) which equals (4.0, 3.0).

This gives us

W = < 3, 4 > * < 4, 3 > = (3*4)+(4*3) = 24 J

3 0
1 year ago
Can enter through any cavity lined with mucus membranes
Gre4nikov [31]

Answer:

mucus

Explanation:

7 0
3 years ago
Other questions:
  • Any Help??? Dued before 2:30pm and it's 9:30am by me... so please take yuh time and ans.... jus ans 1 if you want... This is for
    5·1 answer
  • Which Si units are combined to describe energy?
    7·1 answer
  • A water molecule consists of an oxygen atom with two hydrogen atoms bound to it. The angle between the two bonds is 106◦ . If ea
    11·1 answer
  • magine that two balls, a basketball and a much larger exercise ball, are dropped from a parking garage. If both the mass and rad
    7·1 answer
  • An object's speed is 0.8 m/s, and its momentum is 200 kg-m/s What is the mass of the object?
    13·1 answer
  • 1. Lauren’s SUV was detected exceeding the posted speed limit of 60 kilometers per hour, how many kilometers per hour would she
    14·1 answer
  • a stone is thrown vertically upwards with an initial velocity of 20 metre per second find the maximum height it reaches and the
    14·1 answer
  • Two cars each have a mass of 1050 kg. If the gravitational force between
    13·2 answers
  • 3. A cat walks 0.220km North, then 0. 120 km South in a time of 400 seconds. whats the displacement and average velocity?
    13·1 answer
  • 6. The image to the right shows a moment of inertia
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!