1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
9

An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 75

0 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.
Physics
1 answer:
katen-ka-za [31]3 years ago
8 0

Answer:

Part A) 3899 kPa  

Part B) 392.33 kJ/kg  

Part C) 0.523

Part D) 495 kPa

Explanation:

Part A

First from the temperature at state 1 the relative specific volume and the internal energy at that state are determined from:

u_{1} = 214.07 kJ/kg  

\alphar_{1} = 621.2  

The relative specific volume at state 2 is obtained from the compression ratio:  

\alphar_{2} = \frac{\alpha r_{1}  }{r}

     =621.2/ 8

    = 77.65  

From this the temperature and internal energy at state 2 can be determined using interpolation with data from A-17(table):  

T_{2} = 673 K

u_{2} = 491.2 kJ/kg  

The pressure at state 2 can be determined by manipulating the ideal gas relations at state 1 and 2:  

P_{2} =  P_{1} r\frac{T_{2} }{T_{1} }

       = 95*8*673/300

      = 1705 kPa  

Now from the energy balance for stage 2-3 the internal energy at state 3 can be obtained:  

deltau_{2-3} =q_{in}\\ u_{3} -u_{2} =q_{in}\\u_{3}=u_{2}+q_{in}

     = 1241.2 kJ/kg

From this the temperature and relative specific volume at state 3 can be determined by interpolation with data from A-17(table):  

T_{3} = 1539 K  

\alpha r_{3} = 6.588  

The pressure at state 3 can be obtained by manipulating the ideal gas relations for state 2 and 3:  

P_{3} =P_{2} \frac{T_{3} }{T_{2} }

     = 3899 kPa  

<u>Part B</u>

The relative specific volume at state 4 is obtained from the compression ratio:  

\alpha r_{4}= r\alpha r_{3}

      = 52.7

From this the temperature and internal energy at state 4 can be determined by interpolation with data from A-17:  

T_{4}=775 K

u_{4}= 571.74 kJ/kg  

The net work output is the difference of the heat input and heat rejection where the heat rejection is determined from the decrease in internal energy in stage 4-1:  

w=q_{in}-q_{out}\\q_{in}-(u_{4} -u_{1} )\\=392.33 kJ/kg

<u>Part C  </u>

The thermal efficiency is obtained from the work and the heat input:  

η=\frac{w}{q_{in} }

=0.523

<u>Part D  </u>

The mean effective pressure is determined from its standard relation:  

MEP=\frac{w}{\alpha_{1}- \alpha_{2} }

      =\frac{w}{\alpha_{1}(1- \frac{1}{r}  }

      =\frac{rwP_{1} }{RT_{1} (r-1) }

      =495 kPa

You might be interested in
You drop a ball from a height of 2.0 m, and it bounces back to a height of 1.5 m. a) What fraction of its initial energy is lost
tangare [24]
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
4 0
3 years ago
Which type of telescope does not require darkness in order to be able to use it?
exis [7]

Answer:

A type of telescope that does not require darkness in order to be able to use it is the refracting telescope

Explanation:

A refracting telescope consists of  a lens and an eyepiece collects light which is then focused to present a magnified, bright and clear  image.

The incident light on a refracting telescope is bent by refraction such that the light is focused to the focal point.

In refracting telescopes, the image is formed by bending light, that is by refraction.

The refracting telescope technology has been applied to binoculars and camera zoom lenses.

5 0
3 years ago
On her trips from home to school, karla drives along the streets after exiting the driveway. She drives 1.85 miles south, 2.43 m
12345 [234]
0019235829mamNabshwwhbw
6 0
3 years ago
Que es la expansión del universo?
anastassius [24]

Answer:

La expansión no es más que el incremento con el tiempo de la distancia entre cualquier par de galaxias lejanas. Se suele utilizar para representar este hecho la analogía de un globo donde hemos pintado una serie de puntos a modo de galaxias.

Explanation:

3 0
3 years ago
The thymus gland plays an important role in the developing immune system of a child. It makes infection-fighting lymphocytes cal
dedylja [7]

Answer:

give brainliest please

Explanation:

T- lymphocytes or T cells

6 0
3 years ago
Other questions:
  • The electron beam inside a television picture tube is 0.40 {\rm mm} in diameter and carries a current of 50 {\rm \mu A}. This el
    15·1 answer
  • An iron bar has more mass than a plastic bar of the same volume. so the iron bar will have greater inertia.
    5·2 answers
  • After the fission of U-235 takes place, how many neutrons does the missing nucleus have?
    7·2 answers
  • I need help on #9 (it's side ways sorry...)
    14·2 answers
  • True or False: Once the object hits the water, the forces are balanced and the object will stop. Support your answer with reason
    5·1 answer
  • An infinite sheet of charge is located in the y-z plane at x = 0 and has uniform charge denisity σ1 = 0.35 μC/m2. Another infini
    5·1 answer
  • A 100. N block sits on a rough horizontal floor. The coefficient of sliding friction between the block and the floor is 0.250. A
    9·1 answer
  • If 1 kg of each substance in the table changes temperature by 15°C, which
    9·2 answers
  • Write the relation between horsepower and Watt?​
    15·2 answers
  • Explain why the rocket can move at constant speed in outer space.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!