Answer:
So A we cant sadly do because we cant draw. B is going to be kinetic. Thats because static friction means it stays in one place, for kinetic it means moving. So it will be 0.05 as the coefficient of the friction. Sadly, I cannot calculate C. You will have to use trigonemetry but I cannot fit that big an explanation.
Answer to A: the free body diagram would be the ski things inclined with gravity, friction, and air resistance. I except you know which directions
Answer to B: Kinetic friction is the answer.
Answer to C: Find on own, I cannot write super big explanations - use trigonometry.
<span>They are balanced. If the forces were not balanced the book would move*. In this example, the downward force of gravity on the book is counterbalanced by the upthrust of the desk. </span>
V = t^2 - 9t + 18
position, s
s = t^3 /3 - 4.5t^2 +18t + C
t = 0, s = 1 => 1=C => s = t^3/3 -4.5t^2 + 18t + 1
Average velocity: distance / time
distance: t = 8 => s = 8^3 / 3 - 4.5 (8)^2 + 18(8) + 1 = 27.67 m
Average velocity = 27.67 / 8 = 3.46 m/s
t = 5 s
v = t^2 - 9t + 18 = 5^2 - 9(5) + 18 = -2 m/s
speed = |-2| m/s = 2 m/s
Moving right
V > 0 => t^2 - 9t + 18 > 0
(t - 6)(t - 3) > 0
=> t > 6 and t > 3 => t > 6 s => Interval (6,8)
=> t < 6 and t <3 => t <3 s => interval (0,3)
Going faster and slowing dowm
acceleration, a = v' = 2t - 9
a > 0 => 2t - 9 > 0 => 2t > 9 => t > 4.5 s
Then, going faster in the interval (4.5 , 8) and slowing down in (0, 4.5)
C. making fun of a peer because she is Asian
hope this helps