Answer: A heat engine uses temperature differences which cause pressure changes to exert force on a moving part. A Carnot Process is a theoretical explanation of a process involving pressure and temperature changes during ,amongst other things, phase changes.
Explanation:
The work done in the isothermal process is 10 joule.
We need to know about the isotherm process to solve this problem. The isotherm process can be described as a process where the initial temperature system will be the same as the final temperature. Hence, the internal energy change will be zero.
ΔU = 0
Hence,
ΔU = Q - W
0 = Q - W
Q = W
It means that the heat transferred is the same as the work done.
From the question above, we know that the heat transferred is 10 joule. Thus, the work done in the isothermal process is 10 joule.
Find more on isothermal at: brainly.com/question/17097259
#SPJ4
The reasoning which is in use when large, angular rocks are interpreted to have originated from the outcrop at the top of the hill is; Fossil succession
<h3>Fossil succession of rocks</h3>
The principle of fossil succession in characterized by the fact that fossil entities succeed one another upward through rock layers in a definite and determinable order.
On this note, any time period can be dated by its fossil content.
Read more on fossil succession;
brainly.com/question/2631497
Answer:
The work done by a particle from x = 0 to x = 2 m is 20 J.
Explanation:
A force on a particle depends on position constrained to move along the x-axis, is given by,

We need to find the work done on a particle that moves from x = 0.00 m to x = 2.00 m.
We know that the work done by a particle is given by the formula as follows :


So, the work done by a particle from x = 0 to x = 2 m is 20 J. Hence, this is the required solution.
Figure A shows cross section of a land form or rock. In Figure B, compression stress is applied on it. When compression stresses are applied on a rock, it squeezes the rock cause fold or fracture. The fault formed by compression stress is called thrust fault. If the compression stresses/ force continue to act on a rock it will converge and form thrust fault. In Figure C, tension stresses is applied on the rock. When a tension stress applied on a rock it deforms/ lengthen. There are three type of deformations occur due to tension stresses. One is elastic deformation, in which, rock retains it original shape when force/stresses are removed. Second is plastic deformation, in which rock lengthen and change occur permanently. Third type of deformation is result into fracture or breaking of rock. In Figure C, shear stresses are applied on rock. Shear stresses are applied with equal magnitude but in opposite direction. It cause breaking of rock.