According to the plot, the positions at time <em>t</em> = 0 s and <em>t</em> = 19 s are -1 m and -2 m, respectively. So the average velocity for the 19-s interval is

The the drift velocity of the electrons is determined by atom vibrations in the crystal lattice.
<h3>How to explain the information?</h3>
Assume we could increase the average time between collisions in a typical metal to get to a limit of zero resistance. The free electrons would therefore be continuously accelerated by a constant applied voltage, according to the classical paradigm of conduction. Both the current and the drift speed would gradually pick up over time.
Although it is not the scenario implied by the question, it is possible to switch to zero resistance by using a superconducting wire instead of the usual metal. In this scenario, the maximum current is constrained, the drift velocity of the electrons is determined by atom vibrations in the crystal lattice, and it is difficult to produce a potential difference across the superconductor.
Learn more about electrons in:
brainly.com/question/860094
#SPJ4
You can reason it out like this:
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= 3,600 meters .
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
<u>#2</u>
Use the formula ... Kinetic energy = (1/2) x (mass) x (speed)²
<u>#3 - a).</u>
sun => energy travels as electromagnetic waves => reaches Earth as
heat & light energy.
sun => absorbed in plants => eaten by animals => animals die =>
decay into oil in millions of years => we burn the oil to get the energy.
<u>#3 - b).</u>
food I ate for lunch => metabolized into glucose by my body
=> some of it burned in my muscles to generate energy for immediate needs
=> the rest of it stored as fat for future needs.
<u>#3 - c).</u>
flower pot rolls off the ledge => gravity does work on it all the way down,
producing the kinetic energy it has when it hits the floor.
<u>#3 - d).</u>
oil or natural gas is burned, releasing heat energy => energy is used
to generate electricity => electricity flows through cables from the
power generating plant to your home => hot plate plugged into the
wall => turns electrical energy back into heat energy => heat energy
is conducted into the bottom of the beaker, flows through the glass
to the inside surface => heat energy is conducted from the inside of
the glass to the water, which gets hotter as it absorbs more energy.
=============================
<u>Note:</u>
#1 on the sheet is wrong.
"Work = force x distance" that's correct
But 25-kg is the <em>mass</em> of the ball, <em>not </em>the gravitational <em>force </em>on it.
The force on it is (mass) x (gravity), called its "weight".
That's (25-kg) x (9.8 m/s²) = 245 kg-m/s² = 245 newtons .