Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as

<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =

= wavelength of the wave.- x = horizontal displacement of the wave.
= angular frequency of the wave =
.- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,

therefore,

It is the required frequency of the wave.
The correct option is B.
The length of an object, the mass of an object and the rate of time passage for an object can change depending on the situation which the object is subject to. For instance in space, the mass and the velocity of an object usually change. But, the value of the speed of light in the space is the same for all observers regardless of the motion of an object, that is, the speed of light is a constant.<span />
<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>
The magnitude<span> of a </span>velocity<span> vector is </span>called<span> speed. Supposethat a wind is blowing in from the direction at a speed of 50 km/h. (This meansthat the direction from which the wind blows is west of the northerly direction.) Apilot is steering a plane in the direction at an airspeed (speed in still air) of250 km/h
</span>
The side B will fall down so that means the rope will move the direction of A