The state of matter is liquid.
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
A) -0.5(9.8)*t^2 = -25(t-2) - 0.5(9.8)(t-2)^2
-4.9t^2 = -25t + 50 - 4.9(t^2-4t+4)
0 = -25t+50+19.6t - 19.6
5.4t = 30.4
t = 5.62962963 s
b) h = -4.9(5.62962963)^2
h = -155.2943759
the building is 155.2943759 m high
c) speed 0of first stone
= at
= 9.8*5.62962963
= 55.17037037 m/s
speed of second stone
= v + at
= 25+9.8*3.62962963
= 60.57037037 m/s
Answer:
2.39 atm
Explanation:
- Use Gay-Lussac's law
- P2 = P1T2/T1
- Fill in with our values
- Hope this helped! Please let me know if you need further explanation.
The answer is; A
During a hot day, the land heats up faster than the waters. The air on land becomes warm and less dense fast and begin to rise in the atmosphere. The air on the ocean with is still cooler and denser moves in to replace the rising on land air. This causes a sea breeze. The sea breeze carries with it, moisture. The hotter the day the higher the humidity. When the air goes inland, it causes precipitation when it rises, cool, and condenses.