Answer: A. Internal energy : May be viewed as the sum of the kinetic and potential energies of the molecules
B. Latent heat: The internal energy associated with the phase of a system.
C. Chemical (bond) energy : The internal energy associated with the atomic bonds in a molecule
D. Nuclear energy : The internal energy associated with the bonds within the nucleus of the atom itself
Explanation:
Internal energy is defined as the total energy of a closed system. Internal energy is the sum of potential energy of the system and the kinetic energy of the system. It is represented by symbol U.
Latent heat is the thermal energy released or absorbed by a thermodynamic system when the temperature of the system does not change. It is thus also called as hidden heat.
Chemical energy is the energy stored in the bonds of molecules.
Nuclear energy is the energy which is stored in the nucleus of an atom called as binding energy within protons and neutrons.
Answer:

Explanation:
Firstly, write the expression for the equilibrium constant of this reaction:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Secondly, we may relate the change in Gibbs free energy to the equilibrium constant using the equation below:

From here, rearrange the equation to solve for K:

Now we know from the initial equation that:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Let's express the ratio of ADP to ATP:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D)
Substitute the expression for K:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D)
Now we may use the values given to solve:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}} = [Pi]e^{\frac{\Delta G^o}{RT}} = 1.0 M\cdot e^{\frac{-30 kJ/mol}{2.5 kJ/mol}} = 6.14\cdot 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D%20%3D%20%5BPi%5De%5E%7B%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%20%3D%201.0%20M%5Ccdot%20e%5E%7B%5Cfrac%7B-30%20kJ%2Fmol%7D%7B2.5%20kJ%2Fmol%7D%7D%20%3D%206.14%5Ccdot%2010%5E%7B-6%7D)
20 grams of borax contains (20.0g) / (201 g mol -1) =0.10 mol of borax.
Therefore 0.40 mol of borax
<span>How do buffers work in the human body?
</span>