<span>Let A be the center of a circle and two angles at the adjacent center AOB and BOC. Knowing the measure of the angle AOB = 120 and the measure BOC = 150, find the measures of the angles of the ABC triangle.
</span>solution
Given the above information;
AC=AB, therefore ABC is an isosceles triangle.
therefore, BAO=ABO=(180-120)/2=30
OAC=OCA=(180-90)/2=45
OBC=BCO=(180-150)/2=15
THUS;
BAC=BAO+OAC=45+30=75
ABC=OBA+CBO=15+30=45
ACB=ACO+BCO=15+45=60
most likely A,C,D,E 70% sure
Answer:
women : men
5. : 4
x. : 2400
x = 3000
i) 3000 + 2400= 5400
ii) 3000
iii) 3000 - ( 2400+400) = 200
Sum and Difference Formula for Cosine: cos(α±β)= cosαcosβ <span>∓ sin</span>αsinβ
cos(8x+2x)=cosαcosβ-sinαsinβ
cos(10x)=cosαcosβ-sinαsinβ