<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
Stress is defined as force per unit area and strain is defined as proportional deformation in a material.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight
l = length of wire
A = area of cross section
= change in length
Hence, the correct answer is Option b.
Answer:
The wire now has less (the half resistance) than before.
Explanation:
The resistance in a wire is calculated as:

Were:
R is resistance
is the resistance coefficient
l is the length of the material
s is the area of the transversal wire, in the case of wire will be circular area (
).
So if the lenght and radius are doubled, the equation goes as follows:

So finally because the circular area is a square function, the resulting equation is half of the one before.
Weight = Mass * gravity
= 1470* 9.8 = 14406 N ≈ 14,400 N
Atmospheric electricity and storms,electric current in a vacuum,spark discharge,electrostatic control filters and industrial electrostatic separation <- those are just a few