Answer:
Explanation:
- given S = distance from the first = 3.20cm = 0.032m, t = 1.30×10−8 s
- acceleration = 0.032 X 2 /(1.30×10−8)^2
a = 3.79 x 10^14m/s^2
E = ma /q = 9.11 x 10^-31 x 3.79 x 10^14 / 1.6 x 10^-19
E = magnitude of this electric field. = 2156.3N/C
b) Find the speed of the electron when it strikes the second plate ; V^2 = 2as
= 2 X 3.79 x 10^14 X 0.032
= 4.92 X 10^6m/s
There are several possibilities. Here are a few that occur to me:
-- If Point-A is the summit of Pike's Peak, he may feel somewhat
short of breath.
-- If Point-A is his grandmother's house, he may feel a great sense
of pleasant anticipation.
-- If Point-A is his office on Monday morning, then he may feel
a tightening sensation in his chest.;
-- If Point-A is his home on Friday afternoon, then he feels the
effects of a slow and steady drop in his blood pressure.
I finer point might be put to it if we had any idea of where
Point-A is, and what it represents in the grand scheme
of things.
A= v²/R
a = 12²/30 =4.8 m/s²
Answer:
The same amount of energy is required to either stretch or compress the spring.
Explanation:
The amount of energy required to stretch or compress a spring is equal to the elastic potential energy stored by the spring:

where
k is the spring constant
is the stretch/compression of the spring
In the first case, the spring is stretched from x=0 to x=d, so

and the amount of energy required is

In the second case, the spring is compressed from x=0 to x=-d, so

and the amount of energy required is

so we see that the amount of energy required is the same.