Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Answer:
Te ayudo con una de prueba $
Explanation:
Answer:
11.23%
Explanation:
Lets take
Speed of man in still water =u= 1.73 m/s
Speed of flow of water = v=0.52 m/s
When swims in downward direction then speed of man = u + v
When swims in upward direction then speed of man = u - v
Lets time taken by man when he swims in downward direction is
and when he swims in downward direction is
Lets distance is d and it will be remain constant in both the case




Time taken in still water
2 d= t x 1.73
t=1.15 x d sec


total time in current = 0.82 +0.44 d=1.26 d sec
So the percentage time

Percentage time =11.32%
So it will take 11.32% more time as compare to still current.
Because you need to have a guess to know what to argue or explain in your experiment