Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Answer:
0.7000cm
Explanation:
bbbgffffffjj office yhhjujhhhhhhhhhhhjjnjhhhhbhhh
The correct answer is: Option (A) 75 J
Explanation:
First, be careful with the units here. As you can see it is mentioned that there is a 50N box. It means that the weight (<em>mg</em>) of the box is given as the unit is <em>Newton</em>, not its mass (which is in kg).
As,
Potential-energy = mass * acceleration-due-to-gravity * height
PE = m*g*h --- (A)
In equation (A), mg is actually the weight of the box, which is given.
mg = 50N
h = height = 1.5m
Plug the values in equation (A):
PE = 50 * 1.5 = <em>75 J (Option A)</em>
Answer:
Stable atom
Explanation:
A stable atom is one that has a balanced nuclear inter-particle force reaction as such the binding energy of a stable atom is sufficient to permanently keep the nucleus as one unit. Examples of a stable atom are the atoms of monoisotopic elements such as fluorine, sodium, iodine, gold, aluminium, and cobalt.
In a stable atom the expected number of proton, neutron, and electron are present while in an unstable atom or radioactive atom, there are more than the expected number of neutrons or protons, such that the internal energy of the nucleus is excessive and more than the binding energy, which can lead to radioactive decay.
<span>We see only one side of the moon from earth because the moons period of rotation and revolution are equal. The moon rotates around the Earth at the exact speed as it rotates around its won axis (revolution). The result is: the same side of the moon is facing the Earth. If the moon doesn't rotate on it's axis we on the Earth would see all of the sides of the Moon.</span>