Answer:
2.5 x 10^{5} J
Explanation:
weight = 5,000 N
coefficient of friction = 0.05
distance = 1000 m
how much work is done by the dogs pulling the sledge
work done = force x coefficient of friction x distance
work done = 5000 x 0.05 x 1000 = 2.5 x 10^{5} J
For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s
Displacement is the final position of the object minus the initial position of the object.
Xf - Xi. Displacement is not the distance of the object. If you go to the right 10m and to the left another 10m, your displacement is 0m. But your distance is 20m
Answer:
Each of the joints represents a degree of freedom in the manipulator system and allows translation and rotary motion :) Hope this helps