Answer:
The magnitude of the magnetic field is 1.83 x
T.
Explanation:
The flow of an electric current in a straight wire induces magnetic field around the wire. When current is flowing through two wires in the same direction, a force of attraction exists between the wires. But if the current flows in opposite directions, the force of repulsion is felt by the wires.
In the given question, the direction of flow of current through the wires is opposite, thus both wires applies the same field on each other. The result to repulsion between them.
The magnetic field (B) between the given wires can be determined by:
B = 
where: I is the current, r is the distance between the wires and
is the magnetic field constant.
But, I = 11 A, r = 0.12 m and
= 4
x
Tm/A
So that;
B = 
= 1.8333 x 
B = 1.83 x
T
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.
Answer:
Explanation:
A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. ... Therefore, the oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave.
Poor visibility, difficulties in colour perception, lessened colour contrast vision due to darker shadows and reduced peripheral vision, these are the reasons why one has to be extra careful while driving during hours of sunrise, sunset and night time.
<h3><u>
Explanation:
</u></h3>
Sunrise, sunset and night time are parts of the day with minimal or absolutely no presence of sunlight. To safely navigate roads, we require enough light in order to detect presence of other vehicles, signs and pedestrians. Less sunlight during sunrise and sunset light the sky but makes the roads and vehicles have a darker, less bright view. The contrast between colours is the least, making it difficult to identify objects and see clearly.
A rising or a setting sun can also lead to glares on the driver’s view and thus obstruct it. Since a change in ambient light is observed, our eyes need to adjust with this change and this isn’t spontaneous. Night time driving has headlight glares from approaching vehicles and reduced surrounding visibility. The eyes switching for vision adaptability from dark to bright light if vehicles approach and pass by is not a quick action. Hence the driver’s vision is compromised in every such case and this may lead to accidents.