Answer:
I would love to be a gardener :)
Explanation:
Plants are kool!!!
Answer:
The time of motion is 0.64 s.
Explanation:
Given;
mass of the apple, m = 107 g
height of fall, h = 2 m
The velocity of the apple when it hits the ground is calculated from the law of conservation of energy;

The time of motion is calculated;
v = u + gt
6.261 = 0 + 9.8t
6.261 = 9.8t
t = 6.261 / 9.8
t = 0.64 s
Therefore, the time of motion is 0.64 s
Explanation:
hello,
a = ( v - u ) / t
where u is the initial velocity.
and v is the final velocity.
t represents time,
and a represents acceleration.
in this case,
a = 1.4 m/s²
u = 6 m/s
v = 13 m/s
hence,
1.4 = (13 - 6)/t
1.4t = 7
t = 7/1.4
t = 5 s
thank you!
Answer:
Her angular speed (in rev/s) when her arms and one leg open outward is 1.4 rev/s
Explanation:
given information:
moment inertia of arm and leg when in, I₁ = 0.9 kgm²
moment inertia of arm and leg when extended, I₂ = 2.9 kgm²
angular speed when in, ω₁ = 4.5 rev/s
so, her angular speed (in rev/s) when her arms and one leg open outward is
L₁ = L₂
I₁ω₁ = I₂ω₂
ω₂ = I₁ω₁/I₂
= 0.9 x 4.5/2,9
= 1.4 rev/s
An estimated value for gravity at a distance r from the middle of the Earth can be gotten by supposing that the Earth's density is spherically symmetric. The gravity hinge on only on the mass inside the sphere of radius r. All the assistances from outside cancel out as a fall out of the inverse-square law of gravitation. Another result is that the gravity is the same as if all the mass were concentrated at the midpoint. Therefore, the gravitational acceleration at this radius is
g(r) = GM(r) / r²
M(r) = mass enclosed by radius r.
If the Earth had a continual density ρ, the mass would be M(r) = (4/3)πρr³ and the dependence of gravity on distance would be
g(r) = (4/3)πGρr
G = 6.674e-11 m³/kgs²