1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ronch [10]
3 years ago
13

Factoring when a=1 x^2+4x-45

Mathematics
1 answer:
avanturin [10]3 years ago
6 0

a=x^2+4x-45

a=(x+9)(x-5)

You might be interested in
In a certain test, the number of successful candidates was three times than that of unsuccessful candidate, if there had been 16
Natali5045456 [20]

Answer:

The number of candidates is 136.

Step-by-step explanation:

3 0
3 years ago
Hannah has 67.32 centimeters of wire. She uses 2 pieces of the wire.
mojhsa [17]

Answer:

38.46 (Rounded: 38.5)

Step-by-step explanation:

67.32-2(14.43)=38.46

3 0
3 years ago
If
baherus [9]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: cos 330 = \frac{\sqrt3}{2}

Use the Double-Angle Identity: cos 2A = 2 cos² A - 1

\text{Scratchwork:}\quad \bigg(\dfrac{\sqrt3 + 2}{2\sqrt2}\bigg)^2 = \dfrac{2\sqrt3 + 4}{8}

Proof LHS → RHS:

LHS                          cos 165

Double-Angle:        cos (2 · 165) = 2 cos² 165 - 1

                             ⇒ cos 330 = 2 cos² 165 - 1

                             ⇒ 2 cos² 165  = cos 330 + 1

Given:                        2 \cos^2 165  = \dfrac{\sqrt3}{2} + 1

                              \rightarrow 2 \cos^2 165  = \dfrac{\sqrt3}{2} + \dfrac{2}{2}

Divide by 2:               \cos^2 165  = \dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \bigg(\dfrac{2}{2}\bigg)\dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \dfrac{2\sqrt3+4}{8}

Square root:             \sqrt{\cos^2 165}  = \sqrt{\dfrac{4+2\sqrt3}{8}}

Scratchwork:            \cos^2 165  = \bigg(\dfrac{\sqrt3+1}{2\sqrt2}\bigg)^2

                             \rightarrow \cos 165  = \pm \dfrac{\sqrt3+1}{2\sqrt2}

             Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE

                             \rightarrow \cos 165  = - \dfrac{\sqrt3+1}{2\sqrt2}

LHS = RHS \checkmark

4 0
3 years ago
Billy Found The Slope of the line through the points (2,5) and (-2, -5) using the equation shown in the picture below. What mist
Nady [450]

Answer: the numbers were negative so he needed to add the positive numbers to that equation (I think sorry if I’m wrong)

Step-by-step explanation:

7 0
2 years ago
What is <br> 492.6 ÷ 48<br> UIFEWFHUWJKFUJKCJUKWRFGWUIKEFHKJWJF
lutik1710 [3]

Answer:

10.2625

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Writing work/road work
    11·1 answer
  • Y=1000x+b how do i solve for b?
    8·1 answer
  • A company is offering a job with a salary of $30,000 for the first year and a 2.3% raise year year after that. I know the sequen
    5·1 answer
  • What is the LCM of 4 and 14
    5·2 answers
  • What is 0.48 times 0.4
    12·1 answer
  • Plz help me answer this
    10·2 answers
  • Can someone that is good with math help me with this?
    14·1 answer
  • =−2x^2 +8 +3<br> write in vertex form
    15·1 answer
  • What is the length of line segment BC, if the length of line segment DC is 15?
    13·1 answer
  • Use a table of values with at least 5 values to graph the following function:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!