Hi there!
7 tenths times 10 is pretty easy and can be done on a calculator.
7 tenths is 0.7 in standard form.
0.7 × 10 = 7
Because if you think about it...
Tenths is like being dropped down by ten... then you multiply by ten which brings it back up to whole number seven. It may not make sense but that's what it is.
Hope this helps!
Answer:
(x + 1)² = 7
Step-by-step explanation:
Given:
-2x = x² - 6
We'll start by rearranging it to solve for zero:
x² + 2x - 6 = 0
The first term is already a perfect square so that's fine. Normally, if that term had a non-square coefficient, you would need to multiply all terms a value that would change that constant to a perfect square.
Because it's already square (1), we can simply move to the next step, separating the -6 into a value that can be doubled to give us the 2, the coefficient of the second term. That value will of course be 1, giving us:
x² + 2x + 1 - 1 - 6 = 0
Now can group our perfect square on the left and our constants on the right:
x² + 2x + 1 - 7= 0
x² + 2x + 1 = 7
(x + 1)² = 7
To check our answer, we can solve for x:
x + 1 = ± √7
x = -1 ± √7
x ≈ 1.65, -3.65
Let's try one of those in the original equation:
-2x = x² - 6
-2(1.65) = 1.65² - 6
- 3.3 = 2.72 - 6
-3.3 = -3.28
Good. Given our rounding that difference of 2/100 is acceptable, so the answer is correct.
Answer:
r = 6 in
Step-by-step explanation:
=
r²h/3 = 216
r² (18/3) = 6 r² = 216
r² = 216/6 = 36
r = 6
To solve these questions, use this formula:
X3= F(X1-X2)
Y3= F(Y1-Y2)
Where X3 is the X value in the coordinate your solving for, F is the fraction, X1 is the first X and X2 is the second X
Plug in your numbers to fit this:
X3= 1/4 x (0--2)
Y3= 1/4 x (4- -3)
By solving you get:
(-.5, 1.75)
Answer:
Step-by-step explanation:
By definition of Laplace transform we have
L{f(t)} = ![L{{f(t)}}=\int_{0}^{\infty }e^{-st}f(t)dt\\\\Given\\f(t)=7t^{3}\\\\\therefore L[7t^{3}]=\int_{0}^{\infty }e^{-st}7t^{3}dt\\\\](https://tex.z-dn.net/?f=L%7B%7Bf%28t%29%7D%7D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Df%28t%29dt%5C%5C%5C%5CGiven%5C%5Cf%28t%29%3D7t%5E%7B3%7D%5C%5C%5C%5C%5Ctherefore%20L%5B7t%5E%7B3%7D%5D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%5C%5C%5C%5C)
Now to solve the integral on the right hand side we shall use Integration by parts Taking
as first function thus we have
![\int_{0}^{\infty }e^{-st}7t^{3}dt=7\int_{0}^{\infty }e^{-st}t^{3}dt\\\\= [t^3\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(3t^2)\int e^{-st}dt]dt\\\\=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%3D7%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Dt%5E%7B3%7Ddt%5C%5C%5C%5C%3D%20%5Bt%5E3%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%283t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C)
Again repeating the same procedure we get
![=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt= \frac{3}{s}[t^2\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t^2)\int e^{-st}dt]dt\\\\=\frac{3}{s}[0-\int_{0}^{\infty }\frac{2t^{1}}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{2}}[\int_{0}^{\infty }te^{-st}dt]\\\\](https://tex.z-dn.net/?f=%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%3D%20%5Cfrac%7B3%7D%7Bs%7D%5Bt%5E2%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%7D%7Bs%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B2t%5E%7B1%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Again repeating the same procedure we get
![\frac{3\times 2}{s^2}[\int_{0}^{\infty }te^{-st}dt]= \frac{3\times 2}{s^{2}}[t\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t)\int e^{-st}dt]dt\\\\=\frac{3\times 2}{s^2}[0-\int_{0}^{\infty }\frac{1}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{3}}[\int_{0}^{\infty }e^{-st}dt]\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%3D%20%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5Bt%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B1%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B3%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Now solving this integral we have
![\int_{0}^{\infty }e^{-st}dt=\frac{1}{-s}[\frac{1}{e^\infty }-\frac{1}{1}]\\\\\int_{0}^{\infty }e^{-st}dt=\frac{1}{s}](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7B-s%7D%5B%5Cfrac%7B1%7D%7Be%5E%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B1%7D%5D%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7Bs%7D)
Thus we have
![L[7t^{3}]=\frac{7\times 3\times 2}{s^4}](https://tex.z-dn.net/?f=L%5B7t%5E%7B3%7D%5D%3D%5Cfrac%7B7%5Ctimes%203%5Ctimes%202%7D%7Bs%5E4%7D)
where s is any complex parameter