The basketballs and racquetball eventually stopped bouncing due to the first law. the first law states that an object at rest will stay at rest unless acted upon by an external force. this means that once the 2 balls lose friction, they will remain at rest until acted upon by an external force. once the 2 balls lose friction(energy), they come to a complete stop.
Answer:
distance or displacement
Explanation:
the answer can be displacement or displacement. if the required measure is between two points, we can call it as distance. but if we are to find the distance moved, we call it displacement. though it sounds pretty similar, they are very different. displacement is the shortest distance of movement of a body to its final point (or to the asked point) and distance is the total distance travelled by the body. and while distance is a scalar quantity, that this value shows the magnitude, displacement is a vector quantity, that this value should show both magnitude and direction.
for example if an object travels from point A to point B that is a 10 meters away and back, the distance will be 10+10 which is 20 meters. but the displacement is 0!
since not much information is given, the answer can be both distance or displacement
Answer:
tcucugxojfjgfojcigxuogoudyifodtufukdutfuocyjxuogu
Answer:
The electric force will be 0 N
Explanation:
From the question we are told that
The magnitude of the charge is 
Generally from Coulombs law the electric force between two charges is mathematically represented as

Here r is the distance of separation between that two charges.
Now from the question we are told that the charge is far away from any other charge hence we can say that the distance between the charge and any other charge is 
So

=> 
Hence the electric force will be 0 N
Answer:
Part a)
Average EMF for half cycle is

Part b)
For one complete cycle we will have

Part c)
Maximum induced EMF will be at
t = 0.025 s and 0.075 s
minimum induced EMF is at
t = 0.05s and 0.1 s
Explanation:
As we know that magnetic field is oscillating in direction as well as magnitude
so induced EMF is given as

Part a)
For average value of EMF from positive maximum to negative maximum which is equal to half cycle
so we have




Part b)
For one complete cycle we will have


Part c)
Maximum induced EMF will be at

here we know

t = 0.025 s and 0.075 s
minimum induced EMF is at

so it is
t = 0.05s and 0.1 s