××

×
50N is your force and the acceleration is -9.8m/s^2 due to gravity.
So, you just plug that in.

BUT you know that mass cannot be negative, so you just disregard the negative sign and the mass of the rock is 5.102 grams.
Answer:
Yes, the heat that flows into the system is used to change the internal energy of the gas and becomes work done by the piston.
Explanation:
First law of thermodynamics known as Law of Conservation of Energy, states that energy can neither be created nor destroyed; energy can only be transferred or changed from one form to another.
The first law of thermodynamics states that the change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system. In equation form, the first law of thermodynamics.
This is the first law of thermodynamics
ΔE= Q− W
ΔE= change internal energy of the system.
Q= heat transfer into the system
And
W= work done by the system.
Rewriting the equation
ΔE= Q− W
Q=ΔE +W
Show that the heat flowing l into the system is transferred to the internal energy of the system and the work done by the piston
So the third option is correct
Explanation:
Let us assume that moment about the pin and then setting it equal to zero as the rod is in equilibrium is as follows.
Moment = Force × Leverage

= 0

Therefore, we can conclude that the force (
) in the cable by assuming that the origin of our coordinate system is at the rod’s center of mass is 935.11 N.
Answer:
3.7 m/s^2
Explanation:
The period of a simple pendulum is given by:

where L is the length of the pendulum and g is the free-fall acceleration on the planet.
Calling L the length of the pendulum, we know that:
is the period of the pendulum on Earth, and
is the free-fall acceleration on Earth
is the period of the pendulum on Mars, and
is the free-fall acceleration on Mars
Dividing the two expressions we get

And re-arranging it we can find the value of the free-fall acceleration on Mars:
