Answer:
1.64 * 10^(-5) m
Explanation:
Parameters given:
Angular separation, θ = 0.018 rad
Wavelength, λ = 589 nm = 5.89 * 10^(-7) m
The angular separation when there are 2 slots is given as
θ = λ/2d
where d = separation between slits
d = λ/2θ
d = (589 * 10^(-9))/(2 * 0.018)
d = 1.64 * 10^(-5) m
Gyroscopic wander can be divided into two categories and these are:
- Drift
- Topple
<h3>What is
gyroscopic wander?</h3>
Gyroscopic wander can be defined as a movement of the spin axis (axis of rotation) away from a specific fixed direction.
Based on scientific information and records, there are two main types of gyroscopic wander and these include the following:
Read more on gyroscopic wander here: brainly.com/question/12168194
#SPJ12
Answer:
0.615 m
Explanation:
We need to determine the force on the spring first. By Newton's second law of motion, force is the product of the mass and acceleration. The mass is given.
The acceleration is determined using the equation of motion.
Given parameters:
Initial velocity, <em>u</em> = 0.00 m/s
Distance, <em>s</em> = 4.19 m
Time, <em>t</em> = 0.601 s
We use the equation

With <em>u</em> = 0.00 m/s,



The force is

From Hooke's law, the extension, <em>e</em>, of a string is given by

where <em>k</em> is the spring constant.
Hence,

Answer:
a) 1250 J
b) 17.9 m
Explanation:
Convert horsepower to watts:
0.12 HP = 89.5 W
a) Work = power × time
W = (89.5 W) (14 s)
W = 1250 J
b) Work = force × distance
1250 J = (70 N) d
d = 17.9 m
It might be pull at a force of 100 N. I might be wrong.