1.3 second of time will be required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 105 km
<h3>
What is Speed ?</h3>
Speed is the distance travelled per time taken. It is a scalar quantity. And the S.I unit is meter per second. That is, m/s
In the given question, we want to find how much time is required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 10^5 km.
What are the parameters to consider ?
The parameters are;
- The distance S = 3.85 ×
km
- The Speed of Light C = 3 ×
m/s
Speed = distance S ÷ Time t
Convert kilometer to meter by multiplying it by 1000
C = S/t
3 ×
= 3.85 ×
/ t
Make t the subject of formula
t = 3.85 ×
/ 3 × 
t = 1.2833
t = 1.3 s
Therefore, 1.3 second of time will be required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 105 km
Learn more about Speed here: brainly.com/question/4931057
#SPJ1
Answer:
30N in the direction the 45N acts.
Explanation:
Fnet = F1 + F2 (the vector sum of the forces)
Assigning a positive direction to the 45N force and a negative direction to the 15N force gives:
Fnet = 45 - 15
Fnet = 30N
Since the answer is positive, it is in the direction the 45N force acts.
Water and food because they can help with survival and there everywhere
Answer:
abcdefghijklmnopqrstuvwxyz
Initial kinetic energy = 0J (v=0 (rest))
Final kinetic energy = 1/2mv ²
Ek=1/2(9)(27 ²)
Ek=4.5(729)
Ek=3280.5
∆Energy=3280.5J
(As it starts from 0)
Work= ∆energy
So work =3280.5J
Answer=3300J (forth option)