Unlike acceleration and velocity, speed does not need to specify the direction of motion. Speed is a scalar quality.
Answer:
Earth is nearest the Sun in July and farthest away in July.
Explanation:
This question involves the concepts of Newton's Second Law of Motion.
The acceleration of the bowling ball will be "0.67 m/s²".
<h3>Newton's Second Law of Motion</h3>
According to Newton's Second Law of Motion, when an unbalanced force is applied on an object, it produces an acceleration in it, in the direction of the applied force. This acceleration is directly proportional to the force applied and inversely proportional to the mass of the object. Mathematically,

where,
- a = acceleration = ?
- F = Magnitude of the applied force = 6 N
- m = Mass of the ball = 9 kg
Therefore,

a = 0.67 m/s²
Learn more about Newton's Second Law of Motion here:
brainly.com/question/13447525
#SPJ1
B) Hope it helps ,Have a nice day :)
Answer:
The distance is 
Explanation:
From the question we are told that
The distance from the conversation is 
The intensity of the sound at your position is 
The intensity at the sound at the new position is 
Generally the intensity in decibel is is mathematically represented as
![\beta = 10dB log_{10}[\frac{d}{d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20log_%7B10%7D%5B%5Cfrac%7Bd%7D%7Bd_o%7D%20%5D)
The intensity is also mathematically represented as

So
![\beta = 10dB * log_{10}[\frac{P}{A* d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20%2A%20%20log_%7B10%7D%5B%5Cfrac%7BP%7D%7BA%2A%20d_o%7D%20%5D)
=> ![\frac{\beta}{10} = log_{10} [\frac{P}{A (l_o)} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cbeta%7D%7B10%7D%20%20%3D%20%20log_%7B10%7D%20%5B%5Cfrac%7BP%7D%7BA%20%28l_o%29%7D%20%5D)
From the logarithm definition
=> 
=> ![P = A (d_o ) [10^{\frac{\beta }{ 10} } ]](https://tex.z-dn.net/?f=P%20%3D%20%20A%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta%20%7D%7B%2010%7D%20%7D%20%5D)
Here P is the power of the sound wave
and A is the cross-sectional area of the sound wave which is generally in spherical form
Now the power of the sound wave at the first position is mathematically represented as
![P_1 = A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]](https://tex.z-dn.net/?f=P_1%20%3D%20%20A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D)
Now the power of the sound wave at the second position is mathematically represented as
![P_2 = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
Generally power of the wave is constant at both positions so
![A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ] = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![4 \pi r_1 ^2 [10^{\frac{\beta_1 }{ 10} } ] = 4 \pi r_2 ^2 [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=4%20%5Cpi%20r_1%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%204%20%5Cpi%20r_2%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![r_2 = \sqrt{r_1 ^2 [\frac{10^{\frac{\beta_1}{10} }}{ 10^{\frac{\beta_2}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%5Csqrt%7Br_1%20%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%5Cbeta_1%7D%7B10%7D%20%7D%7D%7B%2010%5E%7B%5Cfrac%7B%5Cbeta_2%7D%7B10%7D%20%7D%7D%20%5D%7D)
substituting value
![r_2 = \sqrt{ 24^2 [\frac{10^{\frac{ 40}{10} }}{10^{\frac{80}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%20%5Csqrt%7B%2024%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%2040%7D%7B10%7D%20%7D%7D%7B10%5E%7B%5Cfrac%7B80%7D%7B10%7D%20%7D%7D%20%5D%7D)
