The ball will decelerate as it moves upwards.
The magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
The given parameters;
- initial velocity of the ball, u = 1.25 m/s
- time of motion of the ball, t = 4.22 s
As the ball rolls up the inclined plane, the velocity decreases and eventually becomes zero when the ball reaches the highest point of the plane.
Thus, the ball decelerate as it moves upwards.
The acceleration of the ball is calculate as;

<em>at the highest point on the incline plane, the final velocity </em>
<em> is zero</em>

Thus, the magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
Learn more here:brainly.com/question/23860763
Answer:
Doppler Radar gathers information about precipitation by sending out pulses of ___Radio wave___ energy
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
The answer is option A, i think but i am not sure
Answer:
Time, t = 6.34 hours.
Explanation:
Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.
Mathematically, velocity is given by the equation;

Therefore, making time the subject of formula;

Given the following data;
Displacement = 5200km
Average velocity = 820km/hr
Substituting into the equation, we have;

Time = 6.34 hours.
<em>Hence, it would take 6.34 hours for the airplane to reach its destination. </em>