We want to find the work done and power exerted, let’s start with work first.
We know that the equation for work is: W = F * D. We need to find the force which we can find by using: F = M * A.
Mass: 300kg
Acceleration (using equation from photo): 1.25 m/s^2
(The equation says x but can be used with y values)
If you are confused about how I found the acceleration; I plugged in 2.5 for the final y value, 0 for the initial y value, 0 for the initial velocity and 4 for t squared.
To solve, for acceleration it’s a matter of simple algebra. You can subtract the initial y position and the initial velocity from the final y position because they are 0. This leaves you with 2.5 m = 1/2a * t^2, from here I multiplied 2.5 by 2 to get rid of the 1/2. Now I have 5 = a * t^2. T^2 is just 2 squared, so four. Simply divide 5 by 4, and boom, you get 1.25 m/s^2.
Force = 300 kg * 1.25 m/s^2 = 375 Newtons
So, work = 500 N * 2.5 m = 1000 Joules
Power: W/t
So, Power = 1000 J / 2 seconds = 500 Watts
Hope this helps!
Liquids evaporate faster as they heat up and more particles have enough energy to break away. The particles need energy to overcome the attractions between them. ... Eventually even particles in the middle of the liquid form bubbles of gas in the liquid. At this point the liquid is boiling and turning to gas.
Florence Griffith-Joyner recorded a time 10.61 seconds (wind reading +1.2) in the final at the 1988 U.S. Olympic Trials the wind reading for this race is not in doubt, and the performance should be the official IAAF women's 100-m world record
Answer:
2. Dot Product
Explanation:
The calculation of the electric flux gives an scalar result.
When we tray to calculate how much electric field passes trough a surface, we are calculating a scalar value. Furthermore, the concept of flux requires the calculation of a scalar value.
Also it is necessary to take into account that the magnitude of the flux trough a surface depends of the inclination of the surface respect to the direction of the electric field. This is taken into account sufficiently by a dot product.
Then, the answer is:
2. Dot Product
Answer:
<em>The difference in pressure between the external air pressure, and the internal air pressure of the middle ear.</em>
Explanation:
First of all, we should note that pressure decreases with height and increases with depth. The air within the middle ear (between the ear drum and the Eustachian tube) adjusts itself to respond to the atmospheric pressure, or when we yawn. At a high altitude like on the hill, the air pressure in the middle ear, is fairly low (this is to balance the low air pressure at this height). While riding down the hill quickly, there is little time for the air pressure in the ear to readjust itself to the increasing external air pressure, causing the external air to push into the ear drum. Along the way, the air within the middle ear is adjusted by the opening of the Eustachian tube, allowing more air into the space in the middle ear to balance the external air pressure. This readjustment causes the ear to pop.