Answer:
Use the form of equation:
Q=mL
You have the specific latent heat of vaporization L = 2.260*10^{6}
And Q, the heat energy supplied, which equals 1695 KJ = 1695*10^{3} J
So you can get the mass by substitution in the formula below.
Constant velocity means the netto force = 0, therefore F(gravity) = F(astronaut).
175N divided by 87,5kg = 2.00kg/N
Answer:
F = 156.3 N
Explanation:
Let's start with the top block, apply Newton's second law
F - fr = 0
F = fr
fr = 52.1 N
Now we can work with the bottom block
In this case we have two friction forces, one between the two blocks and the other between the block and the surface. In the exercise, indicate that the two friction coefficients are equal
we apply Newton's second law
Y axis
N - W₁ -W₂ = 0
N = W₁ + W₂
as the two blocks are identical
N = 2W
X axis
F - fr₁ - fr₂ = 0
F = fr₁ + fr₂
indicates that the lower block is moving below block 1, therefore the upper friction force is
fr₁ = 52.1 N
fr₁ = μ N
a
s the normal in the lower block of twice the friction force is
fr₂ = μ 2N
fr₂ = 2 μ N
fr₂ = 2 fr₁
we substitute
F = fr₁ + 2 fr₁
F = 3 fr₁
F = 3 52.1
F = 156.3 N
I'm pretty sure its Venus!!!
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!
<span>PE=−[G<span>M1</span><span>M2</span>]÷R
</span><span>
Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>