1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
6

10 to 15 simplified

Mathematics
2 answers:
Alex3 years ago
6 0

We do this by first finding the greatest common factor of 10 and 15, which is 5.

Then, we divide both 10 and 15 by the greatest common factor to get the following simplified fraction:

2/3

pashok25 [27]3 years ago
4 0
2/3
Divide the numerator and denominator by their gcd which is 5
You might be interested in
397 students went on a field trip. Eight
lbvjy [14]

Answer:48

Step-by-step explanation:

Total number of students=397

Students that travelled in a car=29

Let the students that travelled in a bus be represented by y.

Since 8 buses were filled, it will be 8y for total students

8y + 29= 397

8y= 397-29

8y= 368

Divide both side by 8

8y/8=368/8

y = 46

Number of students in each bus is 46

8 0
3 years ago
0.25 r – 0.125 + 0.5 r = 0.5 + r . solve for r
Ivahew [28]
First, we need to get all of the r's on the same side.  To do this, we need to subtract "r" from both sides.

0.25r - 0.125 + 0.5r - r = 0.5 + r - r

0.25r - 0.125 +0.5r - r = 0.5

Now, we need to add like terms.

0.25r + 0.5r - r - 0.125 = 0.5

-0.25r - 0.125 = 0.5

Now, we need to get the "r" variable by itself.

-0.25r - 0.125 + 0.125 = 0.5 + 0.125

-0.25r = 0.625

Now, we divide both sides by -0.25

(-0.25r) / (-0.25) = 0.625 / (-0.25)

r = -2.5
6 0
3 years ago
8. Name the ray in the figure.<br> B<br> а.<br> ВА<br> b.<br> AB<br> с.<br> ВА<br> d.<br> AB
tino4ka555 [31]

Answer:

it's a

hope this will help u

3 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
PLEASE HELP!!!<br> Describe the graph for: y&lt; 4x + 3
ELEN [110]
The equation show that it is a linear graph this means the graph is a straight line 
7 0
2 years ago
Read 2 more answers
Other questions:
  • TRANSLATE EACH SENTENCE INTO AN EQUATION.
    14·1 answer
  • The measure of the supplement of an angle is 20° More than three times the measure of the original angle. Find the measures of t
    5·1 answer
  • Harry and Larry are having a barbecue dinner. The probability of Harry staining his shirt during the dinner is
    5·2 answers
  • At what point does the graph of 5x + 4y = 12 intersect the y-axis?
    13·1 answer
  • A repeating decimal + A fraction
    14·2 answers
  • The table shows the distribution of male
    12·1 answer
  • 62174 times 24724 Please help I don't understand plus I don't have a calculator.
    7·1 answer
  • -4/3(3q-10) simplified
    15·2 answers
  • What is the value of f(3) in the function below?
    8·1 answer
  • Help me O people!<br> Please!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!