Please find attached photograph for your answer. Hope it helps. Please do comment
Answer:
(a) W = 1329.5 J = 1.33 KJ
(b) ΔU = 24.27 KJ
Explanation:
(a)
Work done by the gas can be found by the following formula:

where,
W = Work = ?
P = constant pressure = (0.991 atm)(
) = 100413 Pa
ΔV = Change in Volume = 18.7 L - 5.46 L = (13.24 L)(
) = 0.01324 m³
Therefore,
W = (100413 Pa)(0.01324 m³)
<u>W = 1329.5 J = 1.33 KJ</u>
<u></u>
(b)
Using the first law of thermodynamics:
ΔU = ΔQ - W (negative W for the work done by the system)
where,
ΔU = change in internal energy of the gas = ?
ΔQ = heat added to the system = 25.6 KJ
Therefore,
ΔU = 25.6 KJ - 1.33 KJ
<u>ΔU = 24.27 KJ</u>
Answer:
(a) 1.21 m/s
(b) 2303.33 J, 152.27 J
Explanation:
m1 = 95 kg, u1 = - 3.750 m/s, m2 = 113 kg, u2 = 5.38 m/s
(a) Let their velocity after striking is v.
By use of conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
- 95 x 3.75 + 113 x 5.38 = (95 + 113) x v
v = ( - 356.25 + 607.94) / 208 = 1.21 m /s
(b) Kinetic energy before collision = 1/2 m1 x u1^2 + 1/2 m2 x u2^2
= 0.5 ( 95 x 3.750 x 3.750 + 113 x 5.38 x 5.38)
= 0.5 (1335.94 + 3270.7) = 2303.33 J
Kinetic energy after collision = 1/2 (m1 + m2) v^2
= 0.5 (95 + 113) x 1.21 x 1.21 = 152.27 J
Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation: