Answer:
The answer would be melting point.
Explanation:
Hope this helps. Can you please mark me brainliest
Answer:
y = 0.0233 m
Explanation:
In a Young's Double Slit Experiment the distance between two consecutive bright fringes is given by the formula:
Δx = λL/d
where,
Δx = distance between fringes
λ = wavelength of light
L = Distance between screen and slits
d = Slit Separation
Now, for initial case:
λ = 425 nm = 4.25 x 10⁻⁷ m
y = 2Δx = 0.0177 m => Δx = 8.85 x 10⁻³ m
Therefore,
8.85 x 10⁻³ m = (4.25 x 10⁻⁷ m)L/d
L/d = (8.85 x 10⁻³ m)/(4.25 x 10⁻⁷ m)
L/d = 2.08 x 10⁴
using this for λ = 560 nm = 5.6 x 10⁻⁷ m:
Δx = (5.6 x 10⁻⁷ m)(2.08 x 10⁴)
Δx = 0.0116 m
and,
y = 2Δx
y = (2)(0.0116 m)
<u>y = 0.0233 m</u>
Answer: d. 8.25 m/s
Explanation:
We are given that Current= 5 m/s in j direction
Velocity= 8 m/s i + 3 m/s j
Now, we have to find Jada's speed with respect to the water.
First we find Jada's velocity with respect to water
v= (8 i + 3 j) - (5 j)
v= 8i - 2 j
To find the speed, we take the magnitude of this velocity vector we have
|v|=
|v|= = 8.246 m/s
which comes out to be around = 8.25 m/s
So option d is correct.
Answer
given,
focal length of lens A = 5.77 cm
focal length of lens B= 27.9 cm
flies distance from mirror = 11.3 m
now,
Using lens formula
q =11.79 cm
image of lens A is object of lens B
distance of lens = 59.9 - 11.79 = 48.11
now, Again applying lens formula
q' =66.41 cm
hence, the image distance from the second lens is equal to q' =66.41 cm
The SI unit of length or distance is the meter.