Answer:
The distance travelled on the freeway is 149.5 miles.
Explanation:
The school bus travels on the freeway at constant speed. According to the statement, we need to calculate the distance travelled by the vehicle by means of the following formula:
(1)
Where:
- Traveled distance, in miles.
- Speed, in miles per hour.
- Time, in hours.
If we know that
and
, then the distance travelled by the school bus is:



The distance travelled on the freeway is 149.5 miles.
Explanation:
Acceleration is the change in speed over change in time.
a = Δv / Δt
a. The car's acceleration is:
a = (80 km/h − 0 km/h) / 10 s
a = 8 km/h/s
So every second, the speed increases by 8 km/h.
b. The cyclist's acceleration is:
a = (16 m/s − 4.0 m/s) / 5.6 s
a = 2.1 m/s²
c. The stone's speed is:
10.0 m/s² = (v − 0 m/s) / 3.5 s
v = 35 m/s
d. The time is:
1.6 m/s² = (10 m/s − 0 m/s) / t
t = 6.3 s
Answer:
The direction of defliection of the site to the left I think ..
Answer:
Δv = 12 m/s, but we are not given the direction, so there are really an infinite number of potential solutions.
Maximum initial speed is 40.6 m/s
Minimum initial speed is 16.6 m/s
Explanation:
Assume this is a NET impulse so we can ignore friction.
An impulse results in a change of momentum
The impulse applied was
p = Ft = 1400(6.0) = 8400 N•s
p = mΔv
Δv = 8400 / 700 = 12 m/s
If the impulse was applied in the direction the car was already moving, the initial velocity was
vi = 28.6 - 12 = 16.6 m/s
if the impulse was applied in the direction opposite of the original velocity, the initial velocity was
vi = 28.6 + 12 = 40.6 m/s
Other angles of Net force would result in various initial velocities.
Answer:
the boat will either break or go alot faster
Explanation: