I'm pretty sure the answer is d.The weight of the book and the table's upward force on the book are equal in magnitude but opposite in direction.
Answer:
The necessary information is if the forces acting on the block are in equilibrium
The coefficient of friction is 0.577
Explanation:
Where the forces acting on the object are in equilibrium, we have;
At constant velocity, the net force acting on the particle = 0
However, the frictional force is then given as
F = mg sinθ
Where:
m = Mass of the block
g = Acceleration due to gravity and
θ = Angle of inclination of the slope
F = 5×9.81×sin 30 = 24.525 N
Therefore, the coefficient of friction is given as
24.525 N = μ×m×g × cos θ = μ × 5 × 9.81 × cos 30 = μ × 42.479
μ × 42.479 N= 24.525 N
∴ μ = 24.525 N ÷ 42.479 N = 0.577
Here is the rule for see-saws here on Earth, and there is no reason
to expect that it doesn't work exactly the same anywhere else:
(weight) x (distance from the pivot) <u>on one side</u>
is equal to
(weight) x (distance from the pivot) <u>on the other side</u>.
That's why, when Dad and Tiny Tommy get on the see-saw, Dad sits
closer to the pivot and Tiny Tommy sits farther away from it.
(Dad's weight) x (short length) = (Tiny Tommy's weight) x (longer length).
So now we come to the strange beings on the alien planet.
There are three choices right away that both work:
<u>#1).</u>
(400 N) in the middle-seat, facing (200 N) in the end-seat.
(400) x (1) = (200) x (2)
<u>#2).</u>
(200 N) in the middle-seat, facing (100 N) in the end-seat.
(200) x (1) = (100) x (2)
<u>#3).</u>
On one side: (300 N) in the end-seat (300) x (2) = <u>600</u>
On the other side:
(400 N) in the middle-seat (400) x (1) = 400
and (100 N) in the end-seat (100) x (2) = 200
Total . . . . . . . . . . . . <u>600</u>
These are the only ones to be identified at Harvard . . . . . . .
There may be many others but they haven't been discarvard.
Answer:
0.125m/s^2
Explanation:
20-10=10
10 divided by 80=0.125m/s^2