Answer:
To figure out the common denominator for these fractions, I'll first need to factor that quadratic in the denominator on the right-hand side of the rational equation. This will also allow me to find the disallowed values for this equation. Factoring gives me:
x2 – 6x + 8 = (x – 4)(x – 2)
The factors of the quadratic on the right-hand side "just so happen" to be duplicates of the other denominators. This often happens in these exercises. (So often, in fact, that if you get completely different factors, you should probably go back and check your work.)
Step-by-step explanation:
Answer:
See below.
Step-by-step explanation:
Here's an example to illustrate the method:
f(x) = 3x^2 - 6x + 10
First divide the first 2 terms by the coefficient of x^2 , which is 3:
= 3(x^2 - 2x) + 10
Now divide the -2 ( in -2x) by 2 and write the x^2 - 2x in the form
(x - b/2)^2 - b/2)^2 (where b = 2) , which will be equal to x^2 - 2x in a different form.
= 3[ (x - 1)^2 - 1^2 ] + 10 (Note: we have to subtract the 1^2 because (x - 1)^2 = x^2 - 2x + 1^2 and we have to make it equal to x^2 - 2x)
= 3 [(x - 1)^2 -1 ] + 10
= 3(x - 1)^2 - 3 + 10
= <u>3(x - 1)^2 + 7 </u><------- Vertex form.
In general form the vertex form of:
ax^2 + bx + c = a [(x - b/2a)^2 - (b/2a)^2] + c .
This is not easy to commit to memory so I suggest the best way to do these conversions is to remember the general method.
The percent of water would be 40%
Answer:
3x
Step-by-step explanation:
3 . x is 3x
Answer:
The percent of error in the measurement is 2%
Step-by-step explanation:
The percent of error associated with a reported measurement is calculate using the formula;

The error associated with a measurement is defined as half of the smallest unit of measurement used. The measurement reported was 2.5. The smallest unit of measurement for this reading is 0.1. The error is thus;
error = 0.1/2 = 0.05
The percent of error is thus;
