<h3><u>Given</u> :</h3>
Current flow light bulb = 2.5
Resistance of light bulb = 3.6Ω
<h3><u>To Find </u>:</h3>
We have to find voltage of battery
<h3><u>Solution</u> :</h3>
➠ As per ohm's law, current flow through a conductor is directly proportional to the applied potential difference.
➝ V ∝ I
➝ <u>V = I × R</u>
Where, R is the resistance of conductor.
⇒ V = I × R
⇒ V = 2.5 × 3.6
⇒ <u>V = 9 volt</u>
Answer:
10 kg
Explanation:
The question is most likely asking for the mass of the bicycle.
Momentum is the product of an object's mass and velocity. Mathematically:
p = m * v
Where p = momentum
m = mass
v = velocity
Hence, mass is:
m = p / v
From the question:
p = 25 kgm/s
v = 2.5 m/s
Mass is:
m = 25 / 2.5 = 10 kg
The mass of the bicycle is 10 kg.
In case the question requires the Kinetic energy of the bicycle, it can be gotten by using the formula
K. E = ½ * p * v
K. E. = ½ * 25 * 2.5 = 31.25 J
Answer:
A Thermal energy was converted to kinetic energy
"This resolving power" was obviously stated earlier, somewhere before the point where you started copying. With no resolving power specified, there's actually no question, and so no answer.
Answer:
13.78 mT
Explanation:
The peak voltage ε = ωNAB where ω = angular speed of coil = 1500 rpm = 1500 × 2π/60 rad/s = 50π rad/s = 157.08 rad/s, N = number of turns of coil = 250, A = area of coil = πr² where r = radius of coil = 10 cm = 0.10 m,
A = π(0.1 m)² = 0.03142 m² and B = magnetic field strength
So,
B = ε/ωNA
substituting the values of the variables into the equation given that ε = 17 V
So, B = ε/ωNA
B = 17 V/(157.08 rad/s × 250 turns × 0.03142 m²)
B = 17 V/(1233.8634 rad-turns-m²/s)
B = 0.01378 T
B = 13.78 mT