Answer:
A
Explanation:
that should be the answer
Answer: 12.0 milliliters of 6.50 M HCl ( aq ) are required to react with 2.55 g Zn.
Explanation:
moles =
moles of zinc =
The balanced chemical equation is :

According to stoichiometry:
1 mole of zinc reacts with = 2 moles of HCl
Thus 0.0390 moles of zinc reacts with =
moles of HCl
To calculate the volume for given molarity, we use the equation:
.....(1)
Molarity of
solution = 6.50 M
Volume of solution = ?
Putting values in equation 1, we get:


Thus 12.0 ml of 6.50 M HCl ( aq ) are required to react with 2.55 g Zn
Answer:
See the answer below
Explanation:
<em>Since the experiment is set out to determine the melting point of the white solid, after missing the melting point due to distraction, there are two possible solutions and both involves a repeat of the experiment.</em>
1. The first one is to allow the molten substance to solidify again and then repeat the experiment. This time around, a critical attention should be paid to be able to notice the melting point temperature once the temperature gets to 132 C.
2. The second solution would be discard the molten substance and repeat the experiment with the a new solid one. Similarly, critical attention should be paid once the temperature gets to 132 C since it is sure that the melting point lies within 132 and 138 C.
Physicist Ernest Rutherford<span> established the nuclear theory of the atom with his </span>gold-foil experiment<span>. When he shot a beam of alpha particles at a sheet of </span>gold foil<span>, a few of the particles were deflected. He concluded that a tiny, dense nucleus was causing the deflections.</span>
It took 380,000 years for electrons to be trapped in orbits around nuclei, forming the first atoms.
These were mainly helium and hydrogen, which are still by far the most abundant elements in the universe. Present observations suggest that the first stars formed from clouds of gas around 150–200 million years after the Big Bang. Heavier atoms such as carbon, oxygen and iron, have since been continuously produced in the hearts of stars and catapulted throughout the universe in spectacular stellar explosions called supernovae.