Answer:
1.429*10^-5 m
Explanation:
From the question, we are given that
Diameter of the cable, d = 3 cm = 0.03 m
Force on the cable, F = 2 kN
Young Modulus, Y = 2*10^11 Pa
Area of the cable = πd²/4 = (3.142 * 0.03²) / 4 = 0.0028 / 4 = 0.0007 m²
The fractional length = Δl/l
Δl/l = F/AY
Δl/l = 2000 / 0.0007 * 2*10^11
Δl/l = 2000 / 1.4*10^8
Δl/l = 1.429*10^-5 m
Therefore, the fractional length is 1.429*10^-5 m long
Answer:
Conservation of energy
Explanation:
The first law of thermodynamics is given by :

Here,
Q is amount of heat added to the system
is change in internal energy
W is amount of work done by the system
It is clear that the energy can be neither created nor destroyed, it remains conserved. Hence, first law of thermodynamics shows that conservation of energy.
Answer: Acceleration = 5m/s^2; Distance traveled = 320 m
Explanation:
Velocity of car = 40m/s
Time taken = 8 seconds
Acceleration = ?
Distance traveled = ?
A) Since acceleration is the rate of change of velocity per unit time
i.e acceleration = velocity / time
acceleration = 40m/s / 8 seconds
Acceleration = 5m/s^2
B) To get how far the car traveled before stopping, obtain the distance from the formula:
velocity = distance traveled / time
40m/s = distance / 8 seconds
Distance = 40m/s x 8 seconds
Distance = 320 m
Thus, the car’s acceleration is 5m/s^2 while it traveled 320 metres before stopping.
When you work out it helps clear your thoughts and think of nothing. It makes you feel good.
Answer:
Inducted Magnetic field will be toward from you
Inducted current direction will be counter clockwise.
Explanation:
Lenz's law states that the direction of the current induced in a wire by a changing magnetic field is such that the magnetic field created by the induced current opposes the initial changing magnetic field.
So if the field begins to decrease, the induced magnetic field would try to stop this, so its direction will be the same as the magnetic field, toward from you.
This induced magnetic field is produced by the current in the wire. If the inducted magnetic field will be toward you, the right hand rule says that the direction from the inducted current will be counter clockwise.