1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
9

Find the electric energy density between the plates of a 225-μF parallel-plate capacitor. The potential difference between the p

lates is 365 V , and the plate separation is 0.200 mm .
Physics
1 answer:
PSYCHO15rus [73]3 years ago
5 0

Answer:

Energy density will be 14.73 J/m^3

Explanation:

We have given capacitance C=225\mu F=225\times 10^{-6}F

Potential difference between the plates = 365 V

Plate separation d = 0.200 mm 0.2\times 10^{-3}m

We know that there is relation between electric field and potential

E=\frac{V}{d}, here E is electric field, V is potential and d is separation between the plates

So E=\frac{V}{d}=\frac{365}{0.2\times 10^{-3}}=1825000N/C

Energy density is given by E=\frac{1}{2}\varepsilon _0E^2=\frac{1}{2}\times 8.85\times 10^{-12}\times (1.825\times 10^6)^2=14.73J/m^3

You might be interested in
A small, positively charged ball is moved close to a large, positively charged ball. which describes how the small ball likely r
NNADVOKAT [17]

Answer;

-it will move away from the large ball because like charges repel.

Explanation;

-Electric force is the force that pushes apart two like charges, or that pulls together two unlike charges. The basic law of electrostatics Like charges of electricity repel each other, whereas unlike charges attract each other.

When small, positively charged ball is moved close to a large, positively charged ball it would be pushed away from the large positively charged ball since they are both positively charged. One has to put in energy to try to move the small ball closer to the large ball. The closer one try to move it to the large ball, the more energy one has to put in, so the more electrical potential energy the small ball would have.

6 0
3 years ago
Read 2 more answers
Radiant heat makes it impossible to stand close to a hot lava flow. Calculate the rate of heat loss by radiation from 1.00 m^2 o
VARVARA [1.3K]

The rate of heat loss by radiation is equal to <u>-207.5kW</u>

Why?

To calculate the heat loss rate (or heat transfer rate) by radiation, from the given situation, we can use the following formula:

HeatLossRate=E*S*A*((T_{cold})^{4} -(T_{hot})^{4} )

Where,

E, is the emissivity of the body.

A, is the area of the body.

T, are the temperatures.

S, is the Stefan-Boltzmann constant, which is equal to:

5.67x10^{-8}\frac{W}{m^{2}*K^{-4} }

Now, before substitute the given information, we must remember that the given formula works with absolute temperatures (Kelvin), so,  we need to convert the given values of temperature from Celsius degrees to Kelvin.

We know that:

K=Celsius+273.15

So, converting we have:

T_{1}=1110\°C+273.15=1383.15K\\\\T_{2}=36.2\°C+273.15=309.35K

Therefore, substituting the given information and calculating, we have:

HeatLossRate=E*S*A*((T_{cold})^{4} -(T_{hot})^{4} )

HeatLossRate=1*5.67x10^{-8}\frac{W}{m^{2}*K^{-4} }*1m^{2} *((309.35K)^{4} -(1383.15})^{4} )\\\\HeatLossRate=5.67x10^{-8}\frac{W}{K^{-4} }*(95697.42K^{4} -3.66x10^{12}K^{4})\\ \\HeatLossRate=5.67x10^{-8}\frac{W}{K^{-4} }*(-3.66x10^{12} K^{4})=-207522W=-207.5kW

Hence, we have that the rate of heat loss is equal to -207.5kW.

8 0
3 years ago
Please help ASAP for the fill the gap sentences. The brackets are for the energy stores..... thank you in advance.
lesya692 [45]
The answer is c or h
4 0
3 years ago
A stationary siren emits sound of frequency 1000 Hz and wavelength 0.343 m. An observer who is moving toward the siren will meas
Ainat [17]

Answer:

f>1000Hz and wavelength=0.343 m

Explanation:

We are given that

Frequency of stationary siren,f=1000 Hz

Wavelength of stationary sound,\lambda=0.343 m

When a observer is moving towards the siren then the frequency increases.

Therefore,an observer who is moving towards the siren measure a frequency >1000 Hz.

The wavelength depends upon the speed of source.

But we are given that siren is stationary.

Therefore, source is not moving and then the wavelength remains same.

f>1000Hz and wavelength=0.343 m

4 0
3 years ago
What can you say about the speed of the car?
iren2701 [21]
I believe the answer is C
5 0
3 years ago
Other questions:
  • I need help with this please
    6·1 answer
  • Your odometer of your car says 54 123 miles when you start your trip, your watch says 9 45 AM When you get to your
    12·1 answer
  • If an object has a mass of 10 kilograms, how much does it weigh in newtons?
    13·1 answer
  • Transistor heating up in tesla coil !!!! please help me.
    7·1 answer
  • A planet is discovered orbiting around a star in the galaxy Andromeda at the same distance from the star as Earth is from the Su
    14·1 answer
  • What allows a star to remain in stellar equilibrium?
    10·1 answer
  • if a person can jump 2m in earth surface how high can he jump in the moon (g of moon = 1.66m/s, g of earth = 9.8 m/s) [hint: use
    8·1 answer
  • A drill has a density of 11.342 g/cm3. Its mass is 1500 g. What is the volume of the drill? Round to TWO decimal places.
    6·1 answer
  • How 2cos theta ×sin theta is =sin2theta
    6·1 answer
  • Calculate the voltage difference in a circuit with a resistance of 25 Ω if the current in the circuit is 0.5 A.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!