this is due to the existence of other forces called the strong nuclear forces that overcomes the repulsion forces between the protons and keeps the nucleons holding to each other also there is a type of energy that is called the nuclear binding energy and this energy also works on binding the components of the nucleus together
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
Answer:
420 L
Explanation:
Applying Boyle's Law,
PV = P'V'.................... Equation 1
Where P = Initial pressure, P' = Final pressure, V = Initial volume, V' = Final volume.
make V' the subject of the equation
V' = PV/P'.................... Equation 2
From the question,
Given: P = 720 mmHg, V = 350 L, P' = 600 mmHg
Substitute these values into equation 2
V' = (720×350)/600
V' = 252000/600
V' = 420 L
Answer:
Final velocity of the block = 2.40 m/s east.
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum
Mass of bullet = 0.0140 kg
Consider east as positive.
Initial velocity of bullet = 205 m/s
Mass of Block = 1.8 kg
Initial velocity of block = 0 m/s
Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s
Final velocity of bullet = -103 m/s
We need to find final velocity of the block( u )
Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u
We have
2.87 = -1.442 + 1.8 u
u = 2.40 m/s
Final velocity of the block = 2.40 m/s east.
Clearly visible data points and appropriate labels on each access that include units