Answer:
For correlation 1 the standard deviation of portfolio is 0.433.
For correlation 0 the standard deviation of portfolio is 0.3191.
For correlation -1 the standard deviation of portfolio is 0.127.
Explanation:
The standard deviation of a portfolio is computed using the formula:
![\sigma_{P}=\sqrt{w^{2}_{1}\sigma_{1}^{2}+w^{2}_{2}\sigma_{2}^{2}+2\times r\times w_{1}\sigma_{1}w_{2}\sigma_{2}}](https://tex.z-dn.net/?f=%5Csigma_%7BP%7D%3D%5Csqrt%7Bw%5E%7B2%7D_%7B1%7D%5Csigma_%7B1%7D%5E%7B2%7D%2Bw%5E%7B2%7D_%7B2%7D%5Csigma_%7B2%7D%5E%7B2%7D%2B2%5Ctimes%20r%5Ctimes%20w_%7B1%7D%5Csigma_%7B1%7Dw_%7B2%7D%5Csigma_%7B2%7D%7D)
(1)
For <em>r</em> = + 1 compute the standard deviation of portfolio as follows:
![\sigma_{P}=\sqrt{w^{2}_{1}\sigma_{1}^{2}+w^{2}_{2}\sigma_{2}^{2}+2\times r\times w_{1}\sigma_{1}w_{2}\sigma_{2}}\\=\sqrt{(0.30^{2}\times 0.51^{2})+(0.70^{2}\times 0.40^{2})+(2\times1\times0.30\times 0.51\times0.70\times 0.40)}\\=\sqrt{0.187489}\\=0.433](https://tex.z-dn.net/?f=%5Csigma_%7BP%7D%3D%5Csqrt%7Bw%5E%7B2%7D_%7B1%7D%5Csigma_%7B1%7D%5E%7B2%7D%2Bw%5E%7B2%7D_%7B2%7D%5Csigma_%7B2%7D%5E%7B2%7D%2B2%5Ctimes%20r%5Ctimes%20w_%7B1%7D%5Csigma_%7B1%7Dw_%7B2%7D%5Csigma_%7B2%7D%7D%5C%5C%3D%5Csqrt%7B%280.30%5E%7B2%7D%5Ctimes%200.51%5E%7B2%7D%29%2B%280.70%5E%7B2%7D%5Ctimes%200.40%5E%7B2%7D%29%2B%282%5Ctimes1%5Ctimes0.30%5Ctimes%200.51%5Ctimes0.70%5Ctimes%200.40%29%7D%5C%5C%3D%5Csqrt%7B0.187489%7D%5C%5C%3D0.433)
Thus, for correlation 1 the standard deviation of portfolio is 0.433.
(2)
For <em>r</em> = 0 compute the standard deviation of portfolio as follows:
![\sigma_{P}=\sqrt{w^{2}_{1}\sigma_{1}^{2}+w^{2}_{2}\sigma_{2}^{2}+2\times r\times w_{1}\sigma_{1}w_{2}\sigma_{2}}\\=\sqrt{(0.30^{2}\times 0.51^{2})+(0.70^{2}\times 0.40^{2})+(2\times0\times0.30\times 0.51\times0.70\times 0.40)}\\=\sqrt{0.101809}\\=0.3191](https://tex.z-dn.net/?f=%5Csigma_%7BP%7D%3D%5Csqrt%7Bw%5E%7B2%7D_%7B1%7D%5Csigma_%7B1%7D%5E%7B2%7D%2Bw%5E%7B2%7D_%7B2%7D%5Csigma_%7B2%7D%5E%7B2%7D%2B2%5Ctimes%20r%5Ctimes%20w_%7B1%7D%5Csigma_%7B1%7Dw_%7B2%7D%5Csigma_%7B2%7D%7D%5C%5C%3D%5Csqrt%7B%280.30%5E%7B2%7D%5Ctimes%200.51%5E%7B2%7D%29%2B%280.70%5E%7B2%7D%5Ctimes%200.40%5E%7B2%7D%29%2B%282%5Ctimes0%5Ctimes0.30%5Ctimes%200.51%5Ctimes0.70%5Ctimes%200.40%29%7D%5C%5C%3D%5Csqrt%7B0.101809%7D%5C%5C%3D0.3191)
Thus, for correlation 0 the standard deviation of portfolio is 0.3191.
(3)
For <em>r</em> = -1 compute the standard deviation of portfolio as follows:
![\sigma_{P}=\sqrt{w^{2}_{1}\sigma_{1}^{2}+w^{2}_{2}\sigma_{2}^{2}+2\times r\times w_{1}\sigma_{1}w_{2}\sigma_{2}}\\=\sqrt{(0.30^{2}\times 0.51^{2})+(0.70^{2}\times 0.40^{2})+(2\times-1\times0.30\times 0.51\times0.70\times 0.40)}\\=\sqrt{0.016129}\\=0.127](https://tex.z-dn.net/?f=%5Csigma_%7BP%7D%3D%5Csqrt%7Bw%5E%7B2%7D_%7B1%7D%5Csigma_%7B1%7D%5E%7B2%7D%2Bw%5E%7B2%7D_%7B2%7D%5Csigma_%7B2%7D%5E%7B2%7D%2B2%5Ctimes%20r%5Ctimes%20w_%7B1%7D%5Csigma_%7B1%7Dw_%7B2%7D%5Csigma_%7B2%7D%7D%5C%5C%3D%5Csqrt%7B%280.30%5E%7B2%7D%5Ctimes%200.51%5E%7B2%7D%29%2B%280.70%5E%7B2%7D%5Ctimes%200.40%5E%7B2%7D%29%2B%282%5Ctimes-1%5Ctimes0.30%5Ctimes%200.51%5Ctimes0.70%5Ctimes%200.40%29%7D%5C%5C%3D%5Csqrt%7B0.016129%7D%5C%5C%3D0.127)
Thus, for correlation -1 the standard deviation of portfolio is 0.127.