Answer: The number is: 4 ¼ ; or, write as 4.25 . <span>_____________________________________________ </span>Explanation: _______________ We set up the problem as: _____________________________
5(x − 2) = 7+ x ; Solve for "x" (our "unknown number"; which is the answer). ____________________________________________________ Using the "distributive property of multiplication" : ____________________________________________________ a*(b + c) = ab + ac ; AND:
a* (b − c) = ab − ac ; _____________________________________________________ Let us take the "left-hand side" of our equation and expand it: _______________________________________ 5(x − 2) = (5*x) − (5*2) = 5x − 10 ; _________________________________________ and rewrite the equation; substitute our "expanded value" for the "left-hand side"; ________________________________ → 5(x − 2) = 7+ x ; ↔ 5x − 10 = 7+ x ; ____________________________________ Now, subtract "x" from EACH SIDE of the equation; & add "10" to EACH SIDE of the equation; ________________________________________________ → 5x − 10 − x + 10 = 7+ x − x + 10 ; _______________________________________________ → to get: 4x = 17 ; ________________________________________________ → Now, divide EACH side of the equation by "4"; to isolate "x" on one side of the equation; and to solve for "x" (our answer); ________________________________________ → 4x / 4 = 17 / 4; __________________________ → x = 17/4 = 17 ÷ 4 = 4 ¼ ; or, write as 4.25 . _________________________________________ → Answer: The number is: 4 ¼ ; or, write as 4.25 . _____________________________________________ →Let us check our answer: _____________________________________________ "Five times the difference of a number and 2" ; _____________________________________________ → 5* (x − 2) = 5 * (4.25 − 2) = 5 * (2.25) = 11.25 ;
→ Is "11.25" , SEVEN MORE THAN 4.25?? _________________________________________ → 11.25 − 4.25 =?? 7 ??? Yes! __________________________________________
Area of a cirlce=πr² we have two radius:2r and r area of the cirlce₁ + area of the circle₂=80 m² area of the circle₁=π(2r)² area of the circle₂=πr² Then, we can suggest this quation: